Endothelial dysfunction and hypertension in obstructive sleep apnea – Is it due to intermittent hypoxia?

Behrouz Jafari a, Vahid Mohsenin b, * 

Abstract

Background: Obstructive sleep apnea (OSA) is a prevalent disorder causing hypertension. Endothelial dysfunction appears to underlie development of hypertension. It is not known whether hypoxia during sleep is necessarily the prerequisite process for endothelial dysfunction and hypertension in OSA. We therefore examined the relationship between endothelial-dependent vasodilatory capacity, hypoxia and circulating angiogenesis inhibitors in OSA.

Methods and results: We studied 95 subjects with and without OSA and hypertension. Endothelial-dependent vasodilation was assessed using brachial artery flow-mediated vasodilation method (FMD). Plasma angiogenesis inhibitors, endoglin (sEng) and fms-like tyrosine kinase-1 (sFlt-1), were measured using ELISA. The apnea–hypopnea indexes were 41 ± 5 and 48 ± 4 events/hr in normotensive OSA (N-OSA) and hypertensive OSA (H-OSA), respectively, indicating severe OSA. The sleep time spent with SaO2 < 90% (T < 90%) were 34 ± 8 and 40 ± 9 min, respectively. FMD was markedly impaired in H-OSA (8.0% ± 0.5) compared to N-OSA (13.5% ± 0.5, P < 0.0001), H-non-OSA (10.5% ± 0.8, P < 0.01), and N-non-OSA (16.1% ± 1.0, P < 0.0001). There was no correlation between T < 90% and FMD. Both OSA groups had elevated levels of sFlt-1 (62.4 ± 5.9 and 63.9 ± 4.7 pg/ml) compared to N-OSA (32.1 ± 6.5, P = 0.0008 and P = 0.0004, respectively) and H-non-OSA (41.2 ± 7.0, P < 0.05 and P = 0.03, respectively). In contrast, sEng was only elevated in H-OSA (4.20 ± 0.17 ng/ml) compared with N-OSA (3.64 ± 0.14, P = 0.01) and N-non-OSA (3.48 ± 0.20, P = 0.01). There was a modest but statistically significant inverse correlation between sEng and FMD in only H-OSA group (r = −0.38, P < 0.05).

Conclusion: These data show that patients with OSA and hypertension have marked impairment of FMD, independent of hypoxia exposure, which is associated with increased sEng.

Key Messages

Obstructive sleep apnea is a highly prevalent disorder with associated high morbidity and mortality. Obstructive sleep apnea is now considered as one of the causes of systemic hypertension. No all patients with obstructive sleep apnea develop hypertension. There appears to be divergent responses to apnea-associated hypoxia. In this article a group of patients with severe obstructive sleep apnea and hypoxia exposure during sleep had normal blood pressure and relatively preserved endothelial-dependent vasodilatory capacity. A comparable group of patients with similar apnea severity and hypoxia exposure had marked impairment in endothelial-dependent vasodilatory capacity and hypertension. This group had significantly elevated circulating levels of soluble endoglin, an angiogenesis inhibitor, with known effect on endothelial function and development of hypertension. It is conceivable that inflammatory state of obstructive sleep apnea provokes release of angiogenesis inhibitors causing downstream perturbation of endothelial function.

1. Introduction

Obstructive sleep apnea (OSA) is a highly prevalent sleep disorder that affects 15–24% of the adults and is associated with increased morbidity and mortality. Individuals with OSA are particularly at increased risk for premature atherosclerosis, coronary artery disease, stroke and hypertension. Systemic hypertension affects up to two-thirds of patients with OSA. Some investigators have proposed that endothelial dysfunction is mechanistically implicated in a sustained increase in blood pressure and is an early process in the development of atherosclerosis. Patients with OSA have been shown to have endothelial...
dysfunction\textsuperscript{12–15} and evidence for premature atherosclerosis.\textsuperscript{16} Current evidence suggests that inflammatory processes, oxidative stress and endothelial dysfunction may play roles in the pathogenesis of hypertension and vascular complications in OSA.\textsuperscript{15}

We have previously shown elevated concentrations of circulating soluble endoglin (sEng) and soluble fms-like tyrosine kinase-1 (sFlt-1) in hypertensive OSA compared to normotensive OSA.\textsuperscript{17} These angiogenesis inhibitors are released under inflammatory state.\textsuperscript{18,19} These circulating proteins have been shown to have pathogenetic roles in hypertension in preeclampsia,\textsuperscript{20} in human chronic kidney disease,\textsuperscript{21} coronary artery disease\textsuperscript{22} and in animal models of hypertension.\textsuperscript{23,24} However, none of the studies have examined the relationship between endothelial dysfunction and hypertension in relationship to hypoxia exposure in OSA patients. Further, it is not known whether endothelial dysfunction is related to angiogenesis inhibitors.

The specific aims of the present study were to examine the relationship between endothelial-dependent vasoregulatory capacity in OSA patients with and without hypertension, hypoxia exposure and angiogenesis inhibitors.

2. Methods

2.1. Subjects

Patients were recruited consecutively from among those screened for sleep-disordered breathing at Yale Center for Sleep Medicine. Patients with newly diagnosed and untreated OSA and those without OSA (apnea-hypopnea index, AHI < 5 events/hr) as control group were enrolled. The subjects are a subset of a cohort that has been published previously.\textsuperscript{25} We studied hypertensive and normotensive OSA as well as hypertensive and normotensive non-OSA patients. Hypertension was defined by blood pressure \( \geq 140 \text{ mm Hg systolic and/or } \geq 90 \text{ mm Hg diastolic,} \) which had been previously documented by using appropriate sized cuff and measurements that had been made at least in three different occasions according to the standard criteria.\textsuperscript{26} Subjects were excluded if they had known peripheral vascular disease, liver disease, hemolytic anemia, inflammatory disease, active infection, or if they were pregnant, on therapy for OSA, on chronic steroid treatment, or younger than 18 years of age. Each subject was informed of the experimental procedures and signed the consent form for this study that had been approved by the Human Investigation Committee of the Yale University School of Medicine.

2.2. Sleep study

Nocturnal polysomnography was performed as previously described.\textsuperscript{17} Respiratory events were scored according to the American Academy of Sleep Medicine. Hypopnea was scored when there was at least 30% decrease in airflow signal with a \( \geq 4\% \) decrease in oxygen saturation. The percentage of total sleep time associated with oxyhemoglobin saturation of \( < 90\% \) was calculated as a measure of hypoxemia duration.

2.3. Endothelial function

Conduit vessels respond to alterations in blood flow by increasing vessel diameter via an endothelial-dependent mechanism. Endothelial function was assessed by a standard flow-mediated vasodilation (FMD) method using Doppler ultrasound of the brachial artery between 10 am and 3 pm.\textsuperscript{27} In order to best visualize the brachial artery, the arm was comfortably immobilized in the extended position, and the brachial artery was scanned in the longitudinal section 3–5 cm above the antecubital fossa. Gain and depth settings were optimized to identify the lumen-vessel wall interface. After optimal transducer positioning, the skin was marked for reference for later measurements and the arm was kept in the same position throughout the study. After baseline measurements of the brachial artery were recorded, the cuff was placed on forearm and inflated to 200 mm Hg for 5 min to create forearm ischemia. Subsequently, the cuff was deflated and the arterial diameter was measured every 3–5 s after deflation up to 5 min. FMD was expressed as the percentage of change in the brachial artery diameter from baseline to following peak reactive hyperemia.

The artery diameters were measured independently by the two investigators (one blinned to grouping of subjects) using a digital caliper and were verified by an automated border recognition software. Peak vasodilation was calculated as the percent change in the brachial artery diameter from baseline to peak reactive hyperemia. The inter-observer and intra-observer variability in diameter measurements were less than 5%.

2.4. Blood sample

Venous blood sample was obtained 1 h after the subjects had been seated and rested for 60 min between 10 am and 2 pm. Plasma and serum were separated with centrifugation at 1200 g for 10 min at 4 °C, aliquoted and stored at \(-80 °C\) for further analysis.

2.5. Measurement of plasma sEng and sFlt-1

Circulating levels of sEng and sFlt-1 in plasma were measured using enzyme-linked immunosorbent assay using commercially available reagents and recombinant standards (R&D Systems, Minneapolis, MN, USA). All samples were assayed in duplicate. Standards and control samples were run simultaneously for validation. The minimum detection limits for sEng and sFlt-1 were 0.007 ng/ml and 3.5 pg/ml, respectively. Inter- and intra-assay coefficient of variations for both assays were <10%. The assay kit measures total plasma sFlt-1.

2.6. Data analysis

The primary outcome was endothelial-dependent vasodilation as measured by FMD. The required sample size to detect a significant change in FMD (\( \delta = 4, \ SD = 2.7 \)) was 14 per group (\( \alpha = 0.05, \ power = 80\% \)). However, we over sampled the OSA groups to account for the differential susceptibility to hypertension and responses to OSA and hypoxia in this population. Data are expressed as means ± SE. Data were analyzed using ANOVA for simultaneous comparisons of the groups (Graphpad Prism, La Jolla, CA). Spearman correlation was used to analyze the relationship between FMD and sEng and sFlt-1. A multivariable linear regression analysis was used to identify independent clinical variables associated with FMD. The following variables were considered for inclusion in the comprehensive model: age, BMI, smoking, diabetes, dyslipidemia, hypertension and OSA. Inclusion in the final model was determined by a backward-stepwise technique evaluating all potential univariate variables (\( P < 0.20 \)) to create a multivariable model containing variables with \( P < 0.05 \) (SAS Institute Inc, Carey, NC). \( P \) values were 2-sided with a level of significance of \( P < 0.05 \).

3. Results

3.1. Subjects characteristics

As shown in Table 1 both OSA groups had moderately severe OSA with significant oxygen desaturations during sleep. The control
groups had snoring but no OSA or significant oxygen desaturation. The hypertensive non-OSA group was considered to have essential hypertension. There were 10 diabetics and 19 with dyslipidemia in hypertensive OSA. There was no difference in BMI, gender distribution, AH1 or degree of hypoxia exposure between normotensive and hypertensive OSA. One subject with hypertension without OSA was excluded because of incomplete data.

### 3.2. Flow-mediated vasodilation

FMD was markedly impaired in hypertensive OSA (8.0% ± 0.5) compared with hypertensive non-OSA (10.5% ± 0.8, \(P < 0.01\)), normotensive OSA (13.5% ± 0.5, \(P < 0.0001\)), and normotensive non-OSA (16.1% ± 1.0, \(P < 0.0001\)) (Fig. 1). Normotensive OSA had a modest but statistically significant impairment in FMD compared to normotensive non-OSA (\(P < 0.008\)). The multivariable analysis including age, BMI, smoking, diabetes mellitus, dyslipidemia, stenosis, hypertension and OSA showed variables correlating with FMD were OSA (parameter estimate = −2.69, \(P = 0.004\)) and hypertension (parameter estimate = −5.37, \(P < 0.0001\)). This indicated that impaired FMD in hypertensive OSA was not likely due to older age, BMI, smoking, diabetes, dyslipidemia, or stenosis. There was a modest but significant negative correlation between AH1 and FMD (\(r = −0.31, P = 0.003\), data not shown) showing that the higher the AH1 the lower the FMD. However, there was no significant correlation between FMD and \(T < 0.90\). Our FMD values are higher than some previous reports but comparable to others showing internal validity of the measurements. One reason for the difference is that these reports had chosen a fixed time point for measurement of vasodilation as opposed to ours that peak vasodilation was chosen.

### 3.3. sFlt-1

Plasma concentrations of sFlt-1 were elevated in both normotensive (62.4 ± 5.9 pg/ml) and hypertensive non-OSA (32.1 ± 6.5 pg/ml) and hypertensive non-OSA (41.2 ± 7.0 pg/ml) (Table 1).

### 3.4. sEng

Plasma concentrations of sEng were elevated in hypertensive OSA (4.20 ± 0.17 ng/ml) compared with normotensive OSA (3.64 ± 0.14 ng/ml, \(P = 0.01\)) and normotensive non-OSA (3.48 ± 0.20 ng/ml, \(P = 0.01\)). Although the mean plasma concentration of sEng in hypertensive non-OSA subjects (3.64 ± 0.26 ng/ml) was similar to normotensive OSA (3.64 ± 0.14 ng/ml) it was not statistically significant from hypertensive OSA (\(P = 0.09\)) likely due to smaller sample size (Table 1). There was a statistically significant inverse relationship between plasma concentrations of sEng and FMD in only hypertensive OSA group (\(r = −0.38, P < 0.05\)) showing the higher the plasma sEng the lower the FMD (Fig. 2).

### 4. Discussion

Our main finding is that the patients with both OSA and hypertension had markedly impaired endothelial-dependent vasodilatory capacity that inversely correlated with plasma sEng but not to hypoxia exposure. The impairment in vasodilatory capacity in hypertensive OSA was significantly greater than in subjects with hypertension or OSA alone. Patients with OSA without hypertension but with similar hypoxia exposure had relatively preserved endothelial-dependent vasodilatory capacity suggesting divergent vascular responses to obstructive apneas and intermittent hypoxia in OSA population. The impairment in flow-mediated vasodilation independent of hypoxia exposure is in accord with a larger community-based study that flow-mediated dilation did not correlate with the hypoxemia index after adjusting for body mass.

---

**Table 1**

Subjects’ characteristics, sleep-disordered parameters, FMD, and plasma angiogenesis inhibitors.

<table>
<thead>
<tr>
<th></th>
<th>Non-OSA (n = 19)</th>
<th>OSA (n = 36)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group 1 normotensive</td>
<td>Group 2 hypertensive</td>
</tr>
<tr>
<td>Age, yr</td>
<td>47.5 ± 2.1</td>
<td>45.7 ± 2.3</td>
</tr>
<tr>
<td>Male, n</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>29.6 ± 1.1</td>
<td>33.8 ± 2.7</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>115 ± 1</td>
<td>129 ± 2†</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>77 ± 1</td>
<td>89 ± 2†</td>
</tr>
<tr>
<td>AH1, event/hr</td>
<td>1 ± 0.3</td>
<td>2 ± 0.3</td>
</tr>
<tr>
<td>ODI &gt; 4%/hr</td>
<td>1 ± 0.3</td>
<td>2 ± 0.6</td>
</tr>
<tr>
<td>SaO₂ &lt; 90%, min</td>
<td>0</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>Nadir SaO₂, %</td>
<td>88 ± 1</td>
<td>87 ± 1</td>
</tr>
<tr>
<td>Arousal index/hr</td>
<td>30 ± 3</td>
<td>25 ± 3</td>
</tr>
<tr>
<td>FMD, %</td>
<td>16.1% ± 1.0</td>
<td>10.5% ± 0.8</td>
</tr>
<tr>
<td>sFlt-1, pg/ml</td>
<td>32.1 ± 6.5</td>
<td>41.2 ± 7.0</td>
</tr>
<tr>
<td>sEng, ng/ml</td>
<td>3.5 ± 0.2</td>
<td>3.6 ± 0.2</td>
</tr>
</tbody>
</table>

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; AH1, apnea-hypopnea index; ODI, oxygen desaturation index; SaO₂, oxygen saturation; FMD, flow-mediated vasodilation; Data are means ± SE. *P-value significant between Group 3 and 4. †P-value significant between Group 1 and 2 and between Group 3 and 4; ‡P-value significant between Group 1-2 and 4; §P-value significant between Group 1-2 and 3. ¶P-value significant between Group 4 and Group 1-2 and between Group 3 and 1. §§P-value significant between Group 1 and 4 and between Group 3 and 4. P-value significant between Group 4 and 2 for FMD.

---

**Fig. 1.** Endothelial-dependent vasodilatory capacity as measured by flow-mediated vasodilation is markedly impaired in subjects with both obstructive sleep apnea (OSA) and hypertension compared with normotensive OSA, normotensive non-OSA and hypertensive non-OSA.
index and other covariates across all subjects. Based on these studies and our own data, endothelial function is not uniformly affected by exposure to intermittent hypoxia or apnea events in patient with OSA.

Hypertensive OSA subjects had increased plasma levels of sEng in contrast to the normotensive OSA and the control groups. sFlt-1 was elevated in both OSA groups. In the current study, sFlt-1 was elevated in both normotensive and hypertensive OSA compared with non-OSA groups but lower than the prior study. sEng was elevated in the hypertensive OSA and comparable to the previous study. We conclude that sFlt-1 response to apneic events is similar in normotensive and hypertensive OSA but not sufficient to significantly affect flow-mediated vasodilation and elevated sEng is necessary for development of vascular dysfunction. This can explain the difference between hypertensive non-OSA and hypertensive OSA in terms of degree of impairment of endothelial function (both sFlt-1 and sEng need to be elevated). The magnitude of the differences in sEng concentrations between hypertensive OSA and control groups in our study is comparable to those seen with target organ damage and hypertension and in those with high risk for cardiovascular adverse outcome. The mechanism for elevated sEng levels in OSA is unknown. However, there are several possibilities. First, increased angiotsenin II has been reported in OSA which can induce metalloproteinase-14 causing cleavage of sEng from trans-membrane endoglin. Current evidence suggests that inflammatory processes play critical roles in the pathogenesis of hypertension and vascular complications in OSA and can provoke the release of sEng and sFlt-1 via NF-KB signaling pathways. Equally plausible explanation is that these factors are markers of vascular injury in OSA patients with impaired endothelial function and hypertension. However, this is less likely because both of these circulating factors alone or together have been shown to be injurious to endothelium causing hypertension. Further, the patients with hypertension and without OSA had impaired FMD without elevations of angiogenesis inhibitors.

The clinical implication of these findings is that increased levels of these circulating angiogenesis inhibitors may impart increased risks of cardiovascular complication in OSA. However, a prospective study with a larger sample size is needed to determine the significance of these angiogenesis inhibitors as predictors of vascular complications in OSA as has been shown in other vascular disorders.

Our research’s novelty resides in studying patients with similar apnea severity and hypoxia exposure but with divergent vascular responses, vis-à-vis hypertension. To the best of our knowledge no previous study has tried to investigate the mechanism of this divergent response. Our study has some limitations. Aging and diabetes are associated with endothelial dysfunction. Our subjects with both OSA and hypertension were older and had higher prevalence of diabetes. However, the multivariable analysis did not show any significant influence of age and diabetes on FMD. The study was designed to examine endothelial-dependent vasodilatory capacity in relationship to hypertension and OSA and was not powered to examine effect size of angiogenesis inhibitors in the multivariable model. But the fact that these angiogenesis inhibitors were uniquely elevated in hypertensive OSA but not hypertension or OSA alone supports the association with endothelial dysfunction.

In conclusion, we have shown that impairment in endothelial-dependent vasodilation in OSA is not necessarily related to hypoxic exposure suggesting divergent molecular responses to obstructive respiratory events that may explain the varying individual susceptibility to development of vascular complications and particularly hypertension in OSA. This divergent response may be related, at least in part, to differential release of angiogenesis inhibitors contributing to the impairment of endothelial-dependent vasodilatory capacity and hypertension.

**Funding**

Supported in part by an Institutional Research Training Grant from the National Institute of Health (5T32HL07778) and Yale University, Section of Pulmonary, Critical Care and Sleep Medicine intramural grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

**Authors contributions**

Both authors have contributed equally in the design of the study, acquisition of the data and preparation of the manuscript.

**Conflicts of interest**

All authors have none to declare.

**Acknowledgments**

The authors thank Li Qin, PhD for assistance in statistical analysis.

**References**


