Coarctation of the aorta associated with Dandy–Walker variant

Li Zhou a,*, George K. Lui b, c, Rajesh Shenoy b, Cynthia C. Taub c

a Section of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
b Division of Pediatric Cardiology, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
c Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA

Abstract

This article reports a rare case of coarctation of the aorta associated with Dandy–Walker variant in a 17-year-old girl. Differential diagnoses of coarctation of the aorta and Dandy–Walker variant are extensively discussed. In addition, standard surgical treatment of coarctation as well as new approaches such as endovascular stenting are described in detail to provide therapeutic insights into her management. Although surgical or endovascular repair of coarctation results in significant improvement of systemic hypertension and is associated with better survival, cardiovascular complications are still very common. Thus, long-term follow-up after repair is required, and high-quality imaging studies such as echocardiography, CT and MRI are warranted.

Keywords:
Coarctation of the aorta
Dandy–Walker variant
Hypertension
Surgical repair
Endovascular stent

1. Introduction

Coarctation of the aorta is characterized by a narrowing or constriction of the lumen of the aorta, most commonly distal to the origin of the left subclavian artery near the insertion of the ligamentum arteriosum. It is approximately three times more common in males than females. Clinical manifestations depend on the site and extent of the obstruction. Most patients are asymptomatic. Hypertension, discrepant blood pressure and pulses in the upper and lower extremities, and heart murmur are important findings on physical examination. Natural history of untreated aortic coarctation is poor. The life expectancy without operation is 35 years on average, with 50% of patients who die by the age of 32 years, 75% by the age of 46 years and 90% by the age of 58 years. Most patients are asymptomatic. Hypertension, discrepant blood pressure and pulses in the upper and lower extremities, and heart murmur are important findings on physical examination. Natural history of untreated aortic coarctation is poor. The life expectancy without operation is 35 years on average, with 50% of patients who die by the age of 32 years, 75% by the age of 46 years and 90% by the age of 58 years.

2. Case report

A 17-year-old girl from the Dominican Republic was referred for further evaluation of hypertension. The patient was nonverbal and had developmental delay. She was diagnosed with the
Dandy–Walker complex at age of 13, but was never previously evaluated by a neurologist. She was on risperidone 0.5 mg every night for behavioral outbursts and was brought in by her mother to pediatric neurology clinic for irritability. A magnetic resonance imaging (MRI) of brain with contrast was done (Fig. 1), showing hypoplastic inferior cerebellar vermis, and midline communicating between the fourth ventricle and cisterna magna, consistent with the Dandy–Walker variant. The posterior fossa was overall normal in size. The cerebellar hemispheres were normal. The anatomy of the brain stem was normal. There was a component of white matter volume loss posteriorly, left greater than right, which probably was secondary to a congenital vascular insult.

She was found to have an elevated blood pressure by the neurologist and was thus referred to cardiology for further evaluation and management of hypertension. On physical examination, her blood pressure was 165/89 in the left arm and 127/70 in the right leg. Other vital signs were stable. On cardiovascular examination, a grade 2/6 systolic ejection murmur was appreciated at the left sternal border. A continuous murmur was noted over her back. The femoral pulses and distal pedal pulses were not easily palpated. A 15-lead electrocardiogram was shown in Fig. 2. There was no evidence of atrial enlargement or ventricular hypertrophy. A transthoracic echocardiogram revealed normal left ventricle systolic function without significant left ventricular hypertrophy or intracardiac shunts. The aortic valve appeared trileaflet. A severe coarctation was noted just beyond the origin of the left subclavian artery (Fig. 3). There was continuous antegrade flow across the descending aorta with a Doppler pattern suggestive of severe coarctation (Fig. 4). Cardiac MRI revealed a 3 mm focal narrowing of the proximal descending thoracic aorta distal to the origin of the left subclavian artery (Fig. 5).

The patient was thus diagnosed with coarctation of the aorta and underwent successful surgical repair, which consisted of resection of the coarctation segment and interposition of a #16 Hemashied® graft.

After the surgical repair, the patient had significant postoperative hypertension, for which she was placed on an intravenous drip, and then oral amlodipine. Her systolic blood pressure improved quickly into the 110 s. She was discharged home on amlodipine 5 mg daily for her blood pressure. On her first postoperative office visit, she was normotensive on oral amlodipine, with no gradient in blood pressure between the upper and lower extremities. She was followed-up regularly in the cardiology clinic after the operation and had a repeat transthoracic echocardiogram.
one year later. The peak flow velocity at the descending thoracic aorta returned back to normal on the continuous-wave Doppler (Fig. 6).

3. Discussion

Differential diagnoses of coarctation of the aorta include aortic stenosis, thoracic aortic aneurysms (TAA) and hypertrophic cardiomyopathy (HCM). Aortic stenosis is commonly seen in patients with congenital bicuspid aortic valve or acquired rheumatic or calcific aortic valve disease. It is usually detected in older adults. Most patients present with chest pain, exertional syncope or symptoms of heart failure. On physical examination, a high-pitched, mid-systolic crescendo-decrescendo murmur at right upper sternal border radiating to carotids is appreciated. Significant obstruction often causes concentric hypertrophy of the left ventricle and dilated ascending aorta. Diagnosis is beset made by echocardiography. On the other hand, the common causes of TAA are Marfan syndrome, aortic dissection, bicuspid aortic valve, hypertension, atherosclerosis, trauma, or aortitis secondary to Takayasu’s, giant cell, or syphilis. Imaging studies such as echocardiography, contrast-enhanced computed tomography (CT), and MRI are helpful in making the definitive diagnosis. Occasionally, HCM is on the list of differential diagnoses as well. This disease is characterized by asymmetric left ventricle hypertrophy, typically of a nondilated chamber, without obvious cause, such as hypertension and aortic stenosis, resulting in subaortic outflow obstruction.

Many patients are asymptomatic or mildly symptomatic. However, the first clinical manifestation can be catastrophic such as sudden cardiac death in children or young adults during or after physical exertion. A systolic crescendo-decrescendo murmur is often appreciated at left lower sternal border, increasing with Valsalva maneuver or standing. The mainstay of diagnosis of HCM remains to be echocardiogram.

Differential diagnoses for Dandy–Walker variant are mega cisterna magna, arachnoid cyst and vermian-cerebellar hypoplasia besides Dandy–Walker malformation, a much severer disorder characterized by a large posterior fossa cyst and partial or complete absence of the vermis. The common feature of the above mentioned disorders is a cystic malformation of the posterior fossa. Mega cisterna magna can either be asymmetric or manifest apparent mass effect, simulating the appearance of an arachnoid cyst. In the latter case, ventriculography or cisternography may be needed to demonstrate communication of the cystic mass with the subarachnoid space. In contrast, vermian-cerebellar hypoplasia describes congenital malformations with a normal-sized posterior fossa, varying degrees of vermian and cerebellar hypoplasia, and a prominent retrocerebellar cerebrospinal fluid space that communicates freely with the fourth ventricle. Due to the location of the malformations in this spectrum of disorders, MRI is the most sensitive and specific assessment tool to detect the subtle morphologic abnormalities and differentiate the diagnoses.

Surgical repair for coarctation of the aorta is the mainstay of therapeutic strategy. Different surgical techniques have been developed aiming to remove the narrowed segment and to establish unobstructed continuity between the distal aortic arch and the descending aorta. In 1945, Crafoord and Nylin first described resection with end-to-end anastomosis (EEA) to successfully repair coarctation of the aorta. In 1966, subclavian flap aortoplasty (SFA) was introduced to correct more complex anatomical variants. Surgical repair reduces the occurrence of subsequent hypertension. But at least 20% of patients are hypertensive by adolescence,
Post-operative continuous-wave Doppler across the descending thoracic aorta recorded a normal peak flow velocity (<2 m/sec).

Fig. 6.

Despite effective early surgical intervention. Subsequent hypertension appears to be multifactorial due to a variety of factors, including residual or recurrent of coarctation, endothelial dysfunction, altered aortic arch morphology, aortic stiffness, altered baroreceptor reflexes, increased ventricular stiffness, and neurohormonal dysfunction. The risk factors also include an older age at the time of repair and higher blood pressure before the time of repair.

After repair of coarctation, paradoxical hypertension frequently occurs immediately post-operatively. Nitroprusside has often been used to control blood pressure in this setting. Because hypertension after coarctation repair is often associated with elevations in catecholamines, esmolol, a short-acting beta-blocking agent, is effective in controlling blood pressure and its dose is significantly associated with percent reduction in systolic blood pressure. Intravenous nicardipine has been shown to be as effective as nitroprusside in treating post-operative hypertension.

Although treatment for coarctation of the aorta is usually surgical, percutaneous catheter balloon with stent dilation is now an alternative option for many patients. Thanopoulos et al showed that in adult patients with coarctation of the aorta, treatment with endovascular stents is a safe and effective alternative to surgical repair. It was shown that the immediate improvement in hypertension and the morbidity were similar across all groups. Surgical therapy was associated with a very low risk of restenosis (mean 2%) and recurrence, whereas endovascular therapy had a much higher incidence of restenosis (mean 11–21%) and the need for repeat intervention as the majority of aortic coarctation patients are young (mean age from 7 to 30).

Even though surgical or endovascular repair of coarctation results in significant improvement of systemic hypertension and is associated with better survival, cardiovascular complications are still the most common causes of late death in patients with repaired coarctation of the aorta. Thus, long-term follow-up for surveillance of recoarctation, aortic aneurysm formation, aortic dissection, bicuspid aortic valve, endocarditis, premature coronary atherosclerosis, cerebrovascular accidents and hypertension is required, and also warrants high-quality imaging studies such as echocardiography, CT and MRI in the follow-up in addition to rest and exercise blood pressures.

Conflicts of interest

All authors have none to declare.

References

