P2Y receptors as regulators of lung endothelial barrier integrity

Evgeny Zemskov¹, Rudolf Lucas¹, Alexander D. Verin¹², and Nagavedi S. Umapathy¹²

¹Vascular Biology Center; ²Pulmonary and Critical Care Medicine, Medical College of Georgia, Augusta, GA 30912, USA

Address for correspondence: Dr. Nagavedi S. Umapathy, 1459 Laney Walker Blvd, Medical College of Georgia, CB 3701, Augusta, GA 30912, USA. E-mail: usiddaramappa@mcg.edu

ABSTRACT

Endothelial cells (ECs), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, control such diverse processes as vascular tone, homeostasis, adhesion of platelets, and leukocytes to the vascular wall and permeability of vascular wall for cells and fluids. Mechanisms which govern the highly clinically relevant process of increased EC permeability are under intense investigation. It is well known that loss of this barrier (permeability increase) results in tissue inflammation, the hallmark of inflammatory diseases such as acute lung injury and its severe form, acute respiratory distress syndrome. Little is known about processes which determine the endothelial barrier enhancement or protection against permeability increase. It is now well accepted that extracellular purines and pyrimidines are promising and physiologically relevant barrier-protective agents and their effects are mediated by interaction with cell surface P2Y receptors which belong to the superfamily of G-protein-coupled receptors. The therapeutic potential of P2Y receptors is rapidly expanding field in pharmacology and some selective agonists became recently available. Here, we present an overview of recently identified P2Y receptor agonists that enhance the pulmonary endothelial barrier and inhibit and/or reverse endothelial barrier disruption.

Key words: EPAC, lipopolysaccharide, microvascular endothelium, MLC-phosphatase, permeability, VE-cadherin

INTRODUCTION

The vascular endothelium is a semi-selective diffusion barrier between the plasma and interstitial fluid and is critical for normal vessel wall homeostasis. The endothelial permeability is regulated by the balance between centripetal and centrifugal intracellular forces, provided by the contractile machinery and the elements opposing contraction, respectively. The latter include tethering complexes, responsible for cell–cell and cell–matrix contacts, and systems granting cell rigidity and preventing cell collapse, such as actin filaments, microtubules, and intermediate filaments. Some naturally occurring substances such as sphingosine-1-phosphate and the second messenger cAMP are known to enhance the endothelial barrier. Recently, much attention has been given to the therapeutic potential of purinergic agonists and antagonists for the treatment of cardiovascular and pulmonary diseases. Purines and pyrimidines function as signaling molecules (receptor legends), which are released extracellularly from different sources in the body and subsequently reach the target organs. Numerous published data obtained in in vitro and in vivo models suggest that they could be physiologically relevant factors protecting the endothelial barrier. ATP, for example, can be released into the bloodstream from platelets and red blood cells, and its concentrations may temporarily exceed 100 µM. Furthermore, the endothelium is a source of ATP locally within the vascular bed and ATP is released constitutively across the apical membrane of
Purine and pyrimidine receptors (simply called purinoceptors) are divided into two classes: P1 or adenosine receptors and P2, which recognize primarily extracellular ATP, ADP, UTP, and UDP. The P2 receptors are further subdivided into two subclasses. P2X receptors are extracellular ATP-gated calcium-permeable nonselective cation channels that are modulated by extracellular Ca\(^{2+}\). Subtypes are defined according to the molecular structure of cloned mammalian P2 receptors, discriminated by different numerical subscripts (P2Xn or P2Yn). This forms the basis of a system nomenclature (including P2X, P2Y, P2U, P2T, and P2Z receptors) as correlations between cloned and endogenous receptors are established. Several studies demonstrated that P2X receptors are abundant in EC. However, the P2X specific agonist, AMP-CCP, was completely inactive and 12 γ-subunits. These numbers suggest a remarkable tissue-specificity of some subunits.

P2Y receptors are members of the G-protein-coupled receptors (GPCRs) superfamily, which consists of seven transmembrane domains, three extracellular and three intracellular loops, extracellular N- and intracellular C-termini. The receptors are coupled to their immediate effectors, heterotrimeric G-proteins, and function as guanine exchange factors (GEFs). In the inactive state, heterotrimeric G-proteins are present in the cell as αβγ trimers. Gα-subunit is dissociated from Gβγ dimer upon GTP binding and, as a result, two functionally-active effectors (Gz and Gβγ) emerge. Signaling cascades dependent upon Gz and Gβγ activation by P2Y receptors will be discussed further in the text. In mammalian cells of different origin, the expression of 39 distinct G-protein subunits has been documented: 21 α-subunits, 6 β-subunits, and 12 γ-subunits. These numbers suggest a remarkable variety of possible heterotrimer combinations. However, not all of them can be realized because of, for example, a tissue-specificity of some subunits.

P2Y purinoceptors are activated by extracellular ATP/ADP/UTP/UDP-glucose/β-NAD. To date, eight P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14) were identified in mammalian cells. Expressions of P2Y receptors in the EC belong to four functionally distinct subfamilies: Gs, Gq/11, Gi, and G12/13. Activations of these particular G-proteins determine a cell response upon agonist stimulations. Here, we have focused on the effects of purine/pyrimidine-induced P2Y-mediated signaling on the endothelial integrity and respective cascades resulting an enhancement/loss of barrier function will be discussed.

SIGNALING PATHWAYS ACTIVATED UPON P2Y RECEPTOR STIMULATION

Endothelial integrity as well as endothelial barrier function is determined by cell–cell and cell–matrix contacts physically and functionally linking to the EC cytoskeleton. Purinoceptor-mediated signaling pathways affecting endothelial barrier function initiate dynamic changes in cytoskeleton organization, regulation of proteins linking cytoskeletal structures to adherens junctions (AJ), tight junctions (TJ), and focal adhesion (FA) contacts, and protein components of AJ, TJ, and FA. AJ and TJ play an essential role in the endothelial cell–cell contacts. Vascular endothelial cadherin (VE-cadherin) is a major component of AJ, transmembrane protein involved in homotypic contacts with adjacent cells. Binding between extracellular domains of VE-cadherin molecules is Ca\(^{2+}\)-dependent, and a removal of Ca\(^{2+}\)-ions from cell culture medium lead to a quick disassembly of AJ and a loss of the EC monolayer integrity. The cytoplasmic domain of VE-cadherin is linked to the cortical actin via β/α-catenins stabilizing AJ as such providing a basis for dynamic reorganization of cell–cell contacts. The EC TJ consists of transmembrane proteins claudins, occludins, and junctional adhesion molecules (JAM) linked to cytoplasmic proteins such as zonula occludens. Actin-mediated disassembly/stabilization of the cell–cell contacts can be determined by phosphorylation levels of actin-associated 20 kDa regulatory myosin light chain (MLC\(_{20}\)). The phosphorylation/dephosphorylation status of MLC\(_{20}\) plays an important role in actin cytoskeleton organization in the EC and therefore critical for endothelial barrier function. Phosphorylation of MLC\(_{20}\) at its Thr-18/Ser-19 residues by Ca\(^{2+}\)/calmodulin-dependent MLC kinase (MLCK) or Rho kinase (ROCK) leads to actomyosin contraction, centripetal force-driven AJ and results in a loss of the EC monolayer integrity, intercellular
gap formation, and hyperpermeability.[37-39] By contrast, the pathways leading to dephosphorylation of MLC\textsubscript{20} by MLCP or Ser/Thr protein phosphatase 1 (PP1), result in the formation of a thick cortical actin ring, cell relaxation and spreading. Highly-specific interaction between MLCP with its protein substrate, MLC\textsubscript{20}, is determined by myosin phosphatase targeting regulatory subunit of PP1 (MYPT1), the regulatory subunit of PP1. Moreover, an interaction of MLCP and MLC\textsubscript{20} can be abolished, if MYPT1 is phosphorylated by ROCK at Thr-696/Thr-850.[40-42] This inhibitory modification of MYPT1 prevents MLCP-dependent dephosphorylation of MLC\textsubscript{20} and therefore has a negative effect on the barrier function amplifying F-actin stress fiber formation. As generally considered, an activation of small GTPase RhoA is crucial for the endothelial hyperpermeability. Expression of constitutively active RhoA in the EC is sufficient to induce the monolayer integrity loss.[43] Furthermore, various edemagenic factors (such as thrombin, vascular endothelial growth factor (VEGF), transforming growth factor β (TGF-β), lysophosphatidic acid (LPA), microtubule destabilizers (nocodazole, 2-methoxyestradiol), etc.) were shown to compromise the endothelial barrier by a RhoA-dependent mechanism[43-46] and an inhibition of either RhoA or its effector, ROCK, could significantly protect the barrier function of the challenged EC.[44,46]

In the EC, agonist-mediated activation of P2Y receptors may enhance or decrease a barrier function of the endothelium [Figure 1]. Stimulated P2Y11 receptor promotes G\textsubscript{s} protein activation,[47-50] direct interaction of free G\textsubscript{α}s-subunit with plasma membrane adenylate cyclase (AC), and elevation of cAMP levels in targeted cells.[51] Numerous publications indicate that the second messenger cAMP has a critical role in a positive modulation of the barrier function.[52-57] The cAMP-dependent activation of protein kinase A (PKA) has indispensable consequences as a potent positive regulator of endothelial integrity. Recently published data suggest that PKA may prevent RhoA activation by phosphorylation of RhoGDI at Ser-174[58] and stimulate MLCP via phosphorylation of MYPT1 at Ser-695,[19] shifiting the EC to the relaxed shape by prevention of MLC\textsubscript{20} phosphorylation and stress fibers formation. Besides, a generation of cAMP may lead to alternative, PKA-independent activation of Exchange Protein directly Activated by cAMP (Epac1) and its down-stream effectors, Rap1 and Rac1.[52,53,55-57,59,60]

Purinoceptor P2Y14 is involved in heterotrimeric Gi-protein-mediated signaling, which results in an interaction of free G\textsubscript{i}i-subunit with AC and inhibition of cAMP synthesis.[58,61] Besides, Gi-protein-derived G\textsubscript{βγ}-dimers initiate PI3-kinase (PI3-K) or phospholipase C\textsubscript{β} (PLC\textsubscript{β}) signaling pathways.[28,62,65] PI3-K activates PKB/Akt[64] and ERK1/2.[65] PLC activation results in elevation of inositol 1,4,5-triphosphate (IP\textsubscript{3}) and diacylglycerol (DAG) levels and may follow by [Ca2+]\textsubscript{i} influx due to stimulation of plasma membrane and endoplasmic reticulum Ca2+-channels.[63] Elevation of [Ca2+]\textsubscript{i} and DAG levels can induce activation of several PKC isoforms.[64] In case of the regulation of RhoA/ROCK signaling, the PKC\textsubscript{α} isoform functions as a PKA antagonist, since it may activate this pathway by direct phosphorylation of the upstream effectors, RhoGDI and RhoGEF,[67] increasing, therefore, MLC\textsubscript{20} phosphorylation. PKC\textsubscript{α} may also regulate AJ disassembly via phosphorylation of p120 and β-catenin.[68] P1-purinoceptor-mediated activation of G\textsubscript{i}i subunits has also been shown to promote an upregulation of p38 MAPK[65] and may possibly activate JNK by ROCK-dependent phosphorylation;[69] however, these pathways were not described for P2Y-mediated Gi-signaling. The p38 MAPK can initiate stress fiber formation via phosphorylation of actin-capping protein hsp27 and its further dissociation from actin filaments.[8,70] Another important event related to Gi protein-mediated signaling is an activation of Src protein tyrosine kinase (PTK).[71,72] In the EC, Src family PTK may modulate the barrier function by tyrosine phosphorylation of major protein components of AJ and TJ, although the effect of such phosphorylation on endothelial permeability still needs to be clarified.[73-75]

G\textsubscript{q}/11-protein-mediated signaling is activated by agonist stimulation of P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11...
receptors. Free Gzq or Gz11 interact with PLCβ and enhance synthesis of IP₃ and DAG. This essentially results in [Ca²⁺], influx and activation of PKC isoforms. Extensive studies performed in the EC have demonstrated Ca²⁺-dependent activation of endothelial nitric oxide (NO) synthase (eNOS) (via direct interaction with Ca²⁺/calmodulin and/or via phosphorylation by Ca²⁺/calmodulin-dependent protein kinase II (CaMKII)). NO stimulates guanylate cyclase (GC), resulting in an elevation of second messenger cGMP levels and cGMP-dependent protein kinase G (PKG) activation. This pathway serves as a negative feedback control of Ca²⁺ influx through down-regulation of endoplasmic reticulum (ER) IP₃-sensitive channels and plasma membrane Ca²⁺-influx channels and increases Ca²⁺ uptake by ER via activation of ER Ca²⁺-ATPases. Thus, eNOS/GC/PKG pathway can down-regulate the barrier-compromising Ca²⁺-mediated cell signaling. In human umbilical vein EC (HUVEC), stimulatory phosphorylation of eNOS at Ser-1177 can be activated by extracellular ATP, UTP, or ADP. Inhibitory analysis suggested an involvement of P2Y1, P2Y2, and, possibly, P2Y4 receptors in the activation of eNOS via [Ca²⁺] increase and DAG-dependent PKCζ. Another protein target of activated PKG is vasodilator-stimulated phosphorylasp (VASP), a protein regulating actin polymerization. PKG/PKA-phosphorylated VASP has been detected in endothelial cell–cell junctions (TJ and AJ). Although an entire role of VASP phosphorylation in endothelial contraction/relaxation remains unclear, this modification correlates with an enhancement of the barrier function in P2Y agonist-stimulated EC monolayers.

P2Y2 receptor can also activate Gz12-dependent pathways. This signaling requires an interaction of the purinoceptor with αvβ3-integrin, since it can be inhibited either by αv-integrin antisense oligonucleotides or by point mutation in an integrin-binding sequence of the P2Y2 receptor. Activation of G12 protein positively modulate Rho-guanine nucleotide exchange factor (p115Rho-GEF) via its interaction with Gz12 subunit or by activated PKCζ phosphorylation. This, in turn, can promote RhoA-dependent ROCK activation and phosphorylation of MLC20 and MYPT1.

Elevation of cytosolic Ca²⁺ in the EC is a common consequence of activation of most P2Y receptors coupled to Gs (via cAMP-activated Ca²⁺-channels), Gq/11 and Gi (via IP₃-mediated Ca²⁺ release). [Ca²⁺] is essential for activation of eNOS and endothelium-derived release of vasorelaxant, NO. However, an elevation of cytosolic Ca²⁺ is certainly a negative factor for endothelial integrity. Nevertheless, in extracellular purine-activated EC, Ca²⁺ influx is a transient and its effect does not overcome the barrier enhancement.

P2Y RECEPTORS EXPRESSION ANALYSIS IN PULMONARY ENDOTHELIUM

Earlier studies indicated that the most abundant P2 receptor in EC is P2X4 and the other study indicates that P2X4, P2Y11, P2Y1, and P2Y2 are the most expressed P2 receptors in HUVEC. However, in rabbit pulmonary artery EC, the mRNA expression analysis indicates that P2Y1, P2Y2, and P2Y4 receptors are abundantly expressed, but not P2Y6 receptors. Since the expression pattern of P2Y receptors in pulmonary ECs has not been reported earlier, we have used highly clinically relevant human EC to study the mRNA expression. Our quantitative Real-Time RT-PCR (qPCR) analysis of P2Y mRNA expression identifies mRNA for P2Y1, P2Y2, P2Y11, P2Y12, and P2Y14 receptors in both macro (HPAEC) and micro (HLMVEC) vascular pulmonary EC [Figure 2]. Interestingly, P2Y receptors expression levels is quite different in these two closely related cell types of pulmonary vasculature. The P2Y11 receptor (coupled to both Gq and Gs) was highly expressed, P2Y14 receptor expression was moderate and the other P2Y receptors (P2Y1, Y12, and Y2) expression was low to very low levels in HPAEC. However, the mRNA expression levels P2Y receptors were quite different in HLMVEC compared to HPAEC and they all distributed quite significantly [Figure 2]. Our results suggest that P2Y receptors signaling are different in these closely related cell types and detailed studies with receptor-specific agonists and antagonists are needed in order to develop P2Y receptor-based therapeutics.
ROLE OF P2Y RECEPTORS IN PULMONARY EC BARRIER ENHANCEMENT

Since multiple P2Y receptors are expressed at various levels on the pulmonary EC [Figure 2], it is essential to emphasize the P2Y receptor(s) responsible for the pulmonary endothelial barrier enhancement and protection against various insults. The possible interactions between naturally occurring receptor agonists and P2Y receptors expressed on pulmonary EC are very complex. The data regarding role of purines and pyrimidines in the maintenance and alteration of EC barrier are contradictory. Barrier-protective property of ATP has been reported.[96,98] On the other hand, P2Y1-receptor agonists, 2-methylthio ATP (2meS-ATP) and ADP decreased cell size and enhanced permeation of FITC-labeled dextran through HUVEC monolayers.[99] ATP was found to increase paracellular permeability of microvascular endothelium in frog microvessels.[99,100] Our studies demonstrate that ATP and its stable analogs significantly increase the transendothelial resistance (TER) in highly clinically relevant human pulmonary EC via P2Y receptors.[26] Recent studies showed that β-nicotinamide adenine dinucleotide (β-NAD), an important co-enzyme for cellular metabolism, is an important vascular mediator,[101,102] elicits cellular effects through activation of P2Y1/Y11 receptors.[103,104] In addition to ATP, the β-NAD secreted extracellularly from endothelium.[105] Our recent studies demonstrated that extracellular β-NAD significantly enhances the pulmonary endothelial barrier in a dose-dependent manner via P2Y receptors.[80]

SIGNIFICANCE OF SPATIAL DISTRIBUTION P2Y RECEPTORS IN ENDOTHELIUM AND ITS RELEVANCE TO THE BARRIER PROTECTION

We have shown that various P2Y receptors are expressed in pulmonary EC at various levels [Figure 2]. However, the expression levels of these receptors on apical and basal side of the pulmonary endothelium are not known. We speculate that extracellular purines and pyrimidines released from the blood cells (for example, platelets), apical side of EC or alveolar epithelial cells (basal side of EC) stimulate P2Y receptors based on their expression pattern (apical or basal). In addition, a recent study indicated the hetero-oligomerization between two metabotrofic purinoceptors, P2Y1 and P2Y11, co-expressed in HEK293 cells, promotes agonist-induced internalization of the P2Y11 receptor, which itself is unable to undergo endocytosis.[106] Moreover, the agonist profile for the co-expressed P2Y1 and P2Y11 was different from the agonist profile established for cells expressing the P2Y11 receptor only. The hetero-oligomerization of the P2Y1 and P2Y11 receptors modifies the functions of the P2Y11 receptor in response to extracellular nucleotides. Further, a recent study indicate that the human bronchial epithelia express P2Y6 receptors on both apical and basolateral membranes and that the cAMP/PKA pathway regulates apical but not basolateral P2Y6 receptor-coupled ion transport.[107] Therefore, selective activation of specific P2Y receptors responsible for barrier protection might form a basis for the treatment of various lung disorders. The therapeutic potential of P2Y receptors is rapidly expanding field in pharmacology and some selective agonists became recently available.

Table 1 represents both native and synthetic P2Y agonists and antagonists that were used to study P2Y receptors. The P2Y agonist or antagonist can be purchased from Sigma-Aldrich (St. Louis, MO) or Tocris Biosciences (Ellisville, MO). The pharmacological armamentarium for P2Y receptors is limited and agonists that exhibit high-affinity selectivity among P2Y receptors as well as resistance to ectoenzyme-catalyzed metabolism are few. More studies

<table>
<thead>
<tr>
<th>P2Y receptors</th>
<th>Native/Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonist</td>
<td>Antagonist</td>
</tr>
<tr>
<td>Y1</td>
<td>MRS 2179, MRS 2365, 2-MeSADP, ADP, (3-NAD)</td>
</tr>
<tr>
<td>Y2</td>
<td>UTP, ATP, UTPyS, MRS 2768</td>
</tr>
<tr>
<td>Y4</td>
<td>UTP, UTPyS</td>
</tr>
<tr>
<td>Y6</td>
<td>UDP, UTP, UDP(3S, PSB 0474</td>
</tr>
<tr>
<td>Y11</td>
<td>BzATP, ATPyS, ATP, (3-NAD)</td>
</tr>
<tr>
<td>Y12</td>
<td>2-MeSADP (b), ADP (a), ATP (a)</td>
</tr>
<tr>
<td>Y13</td>
<td>2-MeSADP, ATP, 2-MeSATP</td>
</tr>
<tr>
<td>Y14</td>
<td>UDP-glucose, UDP-galactose, UDP-N-acetyl-glucosamine, MRS 2690</td>
</tr>
</tbody>
</table>
are needed in order to characterize the agonist profile of expressed multiple P2Y receptors on the apical or basal side of EC and the pathophysiological agonist concentrations that selectively activate P2Y receptors. Future detailed studies including expression analysis on both apical and basal EC membrane will help to establish conditions for possible P2Y receptor based therapies.

ACKNOWLEDGMENTS

This work was supported in part by the Biomedical Research Grant from the American Lung Association (Southeast) to NSU and NHLBI (HL083327, HL067307) to ADV.

REFERENCES

Fang Y, Ohle ME. Cyclic AMP-dependent, protein kinase A independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: Role of exchange protein activated by cAMP 1 (Epac1). J Pharmacol Exp Ther 2007;322:1189-200.

and opens the paracellular pathway through fyn activation in human lung

Ma YC, Huang J, Ali S, Lowry W, Huang XY. SRC tyrosine kinase is a novel

Ma YC, Jiang J, Ali S, Lowry W, Huang XY. SRC tyrosine kinase is a novel

Ma YC, Jiang J, Ali S, Lowry W, Huang XY. SRC tyrosine kinase is a novel

Ma YC, Jiang J, Ali S, Lowry W, Huang XY. SRC tyrosine kinase is a novel
Zemskov et al.: P2Y receptors as regulators of lung endothelial barrier integrity

Source of Support: American Lung Association (Southeast) to NSU and NHLBI (HL083327, HL067307) to ADV.

Conflict of Interest: None declared.

Author Help: Online submission of the manuscripts

Articles can be submitted online from http://www.journalonweb.com. For online submission, the articles should be prepared in two files (first page file and article file). Images should be submitted separately.

1) First Page File:
Prepare the title page, covering letter, acknowledgement etc. using a word processor program. All information related to your identity should be included here. Use text/rtf/doc/pdf files. Do not zip the files.

2) Article File:
The main text of the article, beginning with the Abstract to References (including tables) should be in this file. Do not include any information (such as acknowledgement, your names in page headers etc.) in this file. Use text/rtf/doc/pdf files. Do not zip the files. Limit the file size to 1024 kb. Do not incorporate images in the file. If file size is large, graphs can be submitted separately as images, without their being incorporated in the article file. This will reduce the size of the file.

3) Images:
Submit good quality color images. Each image should be less than 4096 kb (4 MB) in size. The size of the image can be reduced by decreasing the actual height and width of the images (keep up to about 6 inches and up to about 1800 x 1200 pixels). JPEG is the most suitable file format. The image quality should be good enough to judge the scientific value of the image. For the purpose of printing, always retain a good quality, high resolution image. This high resolution image should be sent to the editorial office at the time of sending a revised article.

4) Legends:
Legends for the figures/images should be included at the end of the article file.