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Abstract: A modification of Logistic Distribution, viz, Binomial Logistic Distribution
(NBLD) is introduced. The various characteristics of the distribution are derived. The
structural analysis of the distribution includes moments, mode, skewness, kurtosis, hazard
rate. Also describes the quantile method of estimation, likelihood method of estimation, order

statistics and stochastic orders. The goodness of the distribution is tested with a real data.
Keywords: Binomial distribution, hazard rate, estimation, Marshall-Olkin family

1. Introduction

The importance as a growth curve of logistic distribution has made it one of the many
important statistical distributions. The shape of the logistic distribution is similar to that of
the normal distribution makes it simpler and also profitable on suitable occasions to replace
the normal distribution by the logistic distribution with negligible errors in the respective
theories.

Schultz (1930), Pear and Reed (1920) and Pear et al. (1940), applied the logistic model as a
growth model in human populations as well as in some biological organisms. Oliver (1964)
used the logistic function in terms of modelling data related to agricultural population. A few
more interesting uses of the logistic function are in the analysis of survival data, Plackett
(1959). Gupta and Kundu (2010) discussed various properties of the two generalizations of
the logistic distributions, namely the skew logistic and the second type which they termed as
proportional reversed hazard family with the baseline distribution as the logistic distribution.
The second one is alternatively known as Type | generalized logistic distribution. However,
the skew logistic distribution (SLD) was first proposed by Wahed and Ali (2001). Nadarajah
(2009) extended this SLD by introducing a scale parameter, and he studied its distributional
properties. Chakraborty et al. (2012) has proposed a new SLD by considering a new skew
function where the skew function is not a cumulative distribution function (c.d.f.). The
importance of the logistic distribution has already been felt in many areas of human
endeavour. Verhulst (1845) used it in economics and demographic studies. Berkson (1944
1951) used the distribution extensively in analyzing bioassay and quantal response data. The
works Berkson (1953), George-et-al (1980), Ojo (1989), Ojo (2002) are a few of many
publications on logistic distribution.

Recently there has been increasing interest in defining new generated families of univariate
continuous distributions by introducing additional shape parameters to the baseline model.
The generated distributions have attracted several statisticians to develop new models.
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Marshall and OIkin(1997) introduced a new family of distributions by adding a parameter to
a family of distributions. They started with a survival function F(x) and considered a family
of survival functions given by

E(X,a):L(X)_ For—o<x<wand 0<a <o
1-(1-a)F(x) (1.1)

An interesting property of this family of distributions is the following: Let X, X,,...be a
sequence of independent and identically distributed (i.i.d.) random variables with survival
function F(x) . Let N be a geometric random variable with probability mass function

P(N=n)=a(l-a)"";n=12.. andO<a<l. Then Uy =min(X;,X,...X,) has a
survival function given by equation (1). If >1 N is geometric random variable with
probability mass function P(N =n)=a"(1-a )" n=1,2,... Then V,, =max (X, X,... X )

also has the survival function (1.1).

Many authors have proposed various univariate distributions belonging to the family of
Marshall-Olkin distributions. A few among them are Marshall-Olkin Pareto by Alice and
Jose (2003), Marshall-Olkin Weibull by Ghitany et al.(2005), Marshall-Olkin semi Weibull
by Alice and Jose(2005), Marshall-Olkin Extended Lomax Distribution and Its Application
to Censored Data(2007), Marshall —Olkin g Weibull by Jose et al.(2010)), etc:. Also
Jayakumar and Thomas (2008), explained a generalization to Marshall-Olkin scheme and its
application to Burr type XII distribution. They proposed a generalization to the family of
distributions as (1.1) as

- 4

a(x,a,y)z(L(x)_J , a>0,>0
1-(1-a)F(x) (1.2)

Nataraja et-al.(2013) proposed a generalization to the Marshal-Olkin form by replacing the

geometric distribution with truncated negative binomial distribution having p.m.f.

ag (9 +n-1

P(N :n)zl—oﬁ 6-1

J(l—a)" , forn=12,...
and arrived in a form

G(x,@,0)= o 1
1= (F(x)+aE(x))g

-1|, a>0,0>0;—0<X<o0

(1.3)
and when a —1, G(x)— F(x) When #=1the introduced family of distributions in

(1.3) becomes the family of Marshall-Olkin distributions.

This family of distributions can be interpreted as follows: Suppose the failure times of a
device are observed. Every time a failure occur, the device is repaired to resume function.
Suppose also that the device is seemed no longer usable when a failure occurs that exceeds a
certain level of severity. Let X, X,,... denote the failure times and let N denote the number
of failures, then U, will represent the time to first failure of device. Hence the new model

could be used to represent the time to first failure and life time.
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Third generalized family of distribution is introduced by sankaran and Jayakumar (2016), by
replacing the distribution N by discrete Mittag-Leffler distribution. They derived a family of
distributions with parameters « and c having survival function

w,c>0,0<a<oo.

1-cF (X) (14)
Note that the Marshall-Olkin method applied to F“the exponential form of a parent
distribution function F. will also give rise to G(x) in (1.4). The family of distribution

generated by truncated discrete Mittag-leffler distribution can also be considered as a
generalization to Marshall-Olkin family of distributions since it reduces to Marshall-Olkin

family when o =1 and c==".

G(x) =

2. Negative binomial family of logistic distribution
The logistic survival function is defined as

E(x,ﬂ):ﬁ, f>0,—0 < X< w o

Substituting this in (1.3), we get

_ af (eﬁx +1)6

G(x,a,0,p)= -1
(Xa ﬂ) 1_a6’ (a+eﬂx)9
(2.2)
The density function is
0o OB(1-a)e” (M +1)
g(X,a,Q,ﬁ):(lf{a‘g) [a+eﬁ£]€+1 )
(2.3)

The expression for r' order moment is
o OB(l-a)e’ (" +1) ;

=) :Txr (1-a") [0{+eﬂx]g+1

—00

X, r=12,..

2
Measure of skewness y; = /8, = V| (%)
2

Moment measure of kurtosis y, = 8, — 3.

Since the expression is not easy to calculate, we find the mean, variance, measure of
skewness and kurtosis by numerical methods for g =1. Table 1 provides the mean for various

values of « and & . Table 2 for measure of skewness and table 3 for kurtosis for various
values of « and 4.
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Table 1. : Table of mean for various values of ¢ and @, for g =1

alf 1 2 3 4 5 6 7 8 9 10 11
0.1 | -2.303 | -3.121 | -3.640 | -3.992 | -4.252 | -4.458 | -4.628 | -4.774 | -4.901 | -5.014 | -5.115
0.3 | -1.204 | -1.742 | -2.186 | -2.537 | -2.814 | -3.036 | -3.219 | -3.374 | -3.508 | -3.626 | -3.731
0.5 | -0.693 | -1.026 | -1.336 | -1.615 | -1.863 | -2.079 | -2.267 | -2.431 | -2.575 | -2.702 | -2.816
0.7 | -0.357 | -0.533 | -0.706 | -0.874 | -1.035 | -1.189 | -1.334 | -1.471 | -1.600 | -1.720 | -1.832
0.9 | -0.105 | -0.158 | -0.211 | -0.263 | -0.315 | -0.367 | -0.419 | -0.470 | -0.521 | -0.572 | -0.622
11| 0095 | 0143 | 0190 | 0.238 | 0.285| 0332 | 0379 | 0426 | 0472 | 0518 | 0564
13| 0262 | 0393 | 0522 | 0649 | 0773 | 0893 | 1.010 | 1123 | 1.232| 1.336 | 1.435
15| 0405 | 0.605 | 0.800 | 0.988 | 1.166 | 1334 | 1.491 | 1.637 | 1772 | 1.897 | 2.012
17| 0531 | 0790 | 1.038| 1.270 | 1485 | 1681 | 1.858 | 2.018 | 2161 | 2.290 | 2.407
19| 0642 | 0952 | 1243 | 1509 | 1.748 | 1959 | 2.145 | 2309 | 2454 | 2582 | 2.697
21| 0742 | 1097 | 1423 | 1714 | 1968 | 2.187 | 2.377 | 2541 | 2.684 | 2.810 | 2922
23| 0833 | 1227 | 1582 | 1.891| 2155 | 2378 | 2568 | 2.731 | 2.872 | 2.996 | 3.106
25| 0916 | 1345| 1724 | 2.047 | 2317 | 2541 | 2.730 | 2.891 | 3.031 | 3.153 | 3.262
27| 0993 | 1453 | 1.852 | 2.185| 2458 | 2.683 | 2.871 | 3.030 | 3.168 | 3.288 | 3.396
29| 1065 | 1552 | 1.968 | 2.308 | 2584 | 2.808 | 2.994 | 3.152 | 3.288 | 3.408 | 3.515
31| 1.131| 1644 | 2073 | 2420 | 2696 | 2919 | 3.104 | 3260 | 3.395| 3.514 | 3.620
Table 2: Table of variance for various values of  and @, for g =1
alf 1 2 3 4 5 6 7 8 9 10 11
01| 3290 | 2620 | 2230 | 2.041 | 1.942 | 1.883 | 1.844 | 1816 | 1.795 | 1.778 | 1.765
0.3 | 3.290 | 3.000 | 2.678 | 2412 | 2222 | 2.093 | 2.006 | 1.946 | 1.903 | 1.870 | 1.846
05| 3290 | 3179 | 3.019 | 2.839 | 2.662 | 2.501 | 2.365 | 2.253 | 2.163 | 2.092 | 2.035
07| 3290 | 3259 | 3.209 | 3.143 | 3.066 | 2.979 | 2.889 | 2.796 | 2.705 | 2.618 | 2.536
0.9 | 3.290 | 3287 | 3.282 | 3276 | 3.268 | 3.258 | 3.246 | 3.233 | 3219 | 3.202 | 3.185
11| 3290 | 3.288 | 3.284 | 3.279 | 3272 | 3.264 | 3.254 | 3.243 | 3.231 | 3.218 | 3.203
13| 3.290 | 3.273 | 3.245 | 3.208 | 3.161 | 3.108 | 3.049 | 2.986 | 2.920 | 2.852 | 2.784
15| 3290 | 3.250 | 3.187 | 3.105 | 3.010 | 2.908 | 2.803 | 2.699 | 2.600 | 2.508 | 2.425
17| 3290 | 3.223 | 3.120 | 2.995 | 2.858 | 2.721 | 2591 | 2474 | 2370 | 2281 | 2.206
1.9 | 3.290 | 3.194 | 3.053 | 2.889 | 2722 | 2.566 | 2.429 | 2.314 | 2218 | 2.141 | 2.079
21| 3290 | 3164 | 2.987 | 2.793 | 2.606 | 2.444 | 2309 | 2202 | 2.118 | 2.053 | 2.001
23| 3.290 | 3.135| 2925 | 2707 | 2510 | 2.348 | 2221 | 2124 | 2051 | 1.995 | 1.951
25| 3290 | 3106 | 2.868 | 2.632 | 2431 | 2273 | 2155 | 2.067 | 2.003 | 1.954 | 1.917
27| 3.290 | 3.079 | 2816 | 2567 | 2.365 | 2.214 | 2104 | 2.026 | 1968 | 1.925 | 1.892
29| 3290 | 3053 | 2768 | 2511 | 2311 | 2.167 | 2.065 | 1.994 | 1942 | 1.903 | 1.874
31| 3290 | 3028 | 2724 | 2.462 | 2.266 | 2.129 | 2.034 | 1969 | 1.921 | 1.886 | 1.859
Table 3: Table of y, for various values of and@, g =1
ald 1 2 3 4 5 6 7 8 9 10 11
01| -1.387 | -1.289 | -1.222 | -1.184 | -1.160 | -1.144 | -1.133| -1.124 | -1.117 | -1.111 | -1.106
03| -1.321 | -1.435| -1418 | -1.370 | -1.326 | -1.290 | -1.262 | -1.240 | -1.223 | -1.209 | -1.197
05| -0980 | -1.257 | -1.400 | -1.455 | -1.461 | -1.445 | -1419 | -1.392 | -1.367 | -1.343 | -1.323
0.7 | -0564 | -0.806 | -1.007 | -1.166 | -1.285 | -1.369 | -1.425| -1.458 | -1.476 | -1.482 | -1.480
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-0.730

-0.798

-0.863

-0.925

1.1

0.157

0.235

0.311

0.387

0.460

0.532

0.602

0.669

0.733

0.795

0.854

1.3

0.424

0.618

0.794

0.949

1.080

1.189

1.276

1.344

1.396

1.433

1.459

1.5

0.634

0.893

1.098

1.250

1.354

1.421

1.458

1.475

1.479

1.473

1.462

1.7

0.798

1.082

1.275

1.389

1.448

1.470

1.469

1.457

1.439

1.419

1.398

1.9

0.927

1.210

1.371

1.444

1.465

1.458

1.438

1.414

1.389

1.365

1.344

2.1

1.027

1.295

1.420

1.458

1.453

1.430

1.401

1.373

1.347

1.324

1.305

2.3

1.107

1.351

1.442

1.453

1.431

1.399

1.367

1.339

1.314

1.293

1.275

2.5

1.169

1.388

1.449

1.440

1.408

1.372

1.339

1.311

1.288

1.269

1.253

2.7

1.219

1.411

1.447

1.423

1.385

1.347

1.315

1.289

1.267

1.249

1.235

2.9

1.259

1.425

1.440

1.406

1.364

1.326

1.295

1.270

1.250

1.234

1.220

3.1

1.291

1.432

1.430

1.389

1.345

1.308

1.278

1.255

1.236

1.221

1.209

Table 4: Table of y, for various values of  and @, for S

alf

1 2

3

4

5

6 7

8

9

10

11

0.1

2414 | 1.915

1.680

1.557

1.483

1.433 | 1.397

1.370

1.348

1.330

1.316

0.3

3.391 | 2.896

2.513

2.242

2.054

1.921 | 1.823

1.750

1.692

1.646

1.608

0.5

3.881 | 3.614

3.330

3.061

2.824

2.625 | 2.460

2.324

2.213

2.120

2.043

0.7

4.110 | 4.023

3.915

3.790

3.656

3.516 | 3.377

3.242

3.113

2.992

2.880

0.9

4.192 | 4.184

4.173

4.160

4.144

4.126 | 4.105

4.083

4.058

4.031

4.002

11

4.193 | 4.187

4.178

4.167

4.154

4.139 | 4.122

4.103

4.083

4.060

4.036

1.3

4.150 | 4.102

4.040

3.965

3.881

3.789 | 3.691

3.591

3.489

3.389

3.290

1.5

4.084 | 3.975

3.840

3.689

3.530

3.371 | 3.216

3.070

2.936

2.813

2.702

1.7

4.006 | 3.831

3.627

3.414

3.206

3.014 | 2.841

2.689

2.558

2.444

2.345

1.9

3.923 | 3.685

3.424

3.169

2.938

2.737 | 2.568

2.425

2.307

2.207

2.124

2.1

3.840 | 3.545

3.240

2.961

2.723

2.527 | 2.368

2.239

2.134

2.048

1.976

2.3

3.758 | 3.414

3.078

2.788

2.552

2.365 | 2.219

2.103

2.010

1.934

1.872

2.5

3.679 | 3.294

2.936

2.642

2414

2.239 | 2.104

1.999

1.916

1.849

1.794

2.7

3.604 | 3.183

2.812

2.521

2.301

2.137 | 2.014

1.919

1.844

1.783

1.734

2.9

3.532 | 3.083

2.704

2418

2.208

2.055 | 1.941

1.854

1.785

1.731

1.685

3.1

3.465 | 2.992

2.610

2.330

2.130

1.987 | 1.881

1.801

1.738

1.687

1.646

Close observation on the four tables we can have an approximate idea of parameters of a given data

set.

Random variable generation X =

The first derivative of log(g) is

January-2021
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a(l—UaH +a9)% -a

a—(l—Uae +a‘9)%

1

a -a
2

whereU ~U(0,1) .
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(0-1)pe” (6+1)pe”
(1+e”)  (a+e™)

(In(g)) =B+

Mode(x):%|n e(a_l)i\/(?z(ot—l) +4a

0 fora=1
Mode =<<0 for e <1
>0 fora>1

8(c—1):£/6% (a—1)" +4a
>

p.d.f is decreasing for x > 1 In

8(c—1)J0 (a 1)’ +4a
2

. . 1
increasing for X <—1In

Second derivative of log G is

(In(9))

" (6’—1)ﬂzeﬂx _(6’+1)aﬂzeﬁx

(1+e/’x)2 (a+eﬂx)2

20+ |4’ (1+0)+a (0% -1)(a® -1
Point of inflexion is im “ \/ ¢ ( ) a( )(“ )
p (6-ab-a-1)

03r -
q(x,.2,2,.5)
g(X, '27 153 5)0 2— —
o My
_g()_(,_.2,25,.5) P
01F ".l [ 4 -]
I ‘... ‘l‘.
0 )| -F'M ‘_'n_ l_k
06 20 -10 0 10
a(x,2,15,.5) X
(x,2,15,1) "“
X, 2,19, L ]
ax 04 A
o(x,2,15,15) e
02
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06
g(x,.5,15,1)

9(x,.9,15,1)q 4L i

9(x,2,15,1)

5 10
The hazard rate function is given by
(a1 (1re)
(a+e” )9 —(1+¢” )ﬂ(a +e)
,BH(a—l) 201
((a+1)-2")(@+1)

As [ increases hazard rate increases for fixed value of # and « .

59(1—1) 201

o

((a +1)” —29)(1+01J

As « increases hazard rate decreases exponentially for fixed value of S and 6.

h(0)=

1 - p—
h(5.0.2,2) -

h(5.0.82) |

5
h(.5,0,18,2) [+.*

Q‘l.
0\‘“.?_— As a increases hazard rate decreases
0 2 4 6 8 10 and the rate of decreases increases as
a @ increases.
I I I I
10r .
h(5,.5,0,2)
h(5,.9,0,2)
. o i
h(5,2,0,2)
LA PR As@ increases hazard rate decreases
0 2 4 6 8 10 fora <1, and increases fora >1.
0
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T T T
10 o
h(.5,.5,20,pB) T
h(.5,15,20,B) . .v;_'.-’
Tt 5 o .
h(.5,25,20,B) e,
- - - _'l.
0 et e | As fincreases hazard rate increases
0 2 4 6 8 10 fast fora <1, Increases fast asa >1
B
3. Quantile method of estimation
3+a’ %
1 a 2 -a
Xo =—1In
Q IB 0
3+a

January-2021

j%

]%
04

|

1+3a’
4

4

=—1In
> B [1+3a‘9J%
a_
4
1+a? Yo
1 a[ 2 ] o
p= In 7
XQz (14‘“6)9
“Tl
(3.1)
_ _Xg
1%
. . 1+32° ) | °
= = a—a
3+a0]‘9 (3+a9j9 4
R I | R L
(1+3a9]9
4 -a
i i (3.2)
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(14_“9)
In >
0=

L - (3.3)
Solving (3.1), (3.2) and (3.3) iteratively we get the values of parameters. For getting initial values of
parameters one may use the tables of mean variance skewness and Kurtosis.

4. Likelihood method of estimation

The log likelihood equations are

InIn(L) =néIn()+nIn(8)+nin(B)+nin(l-a)-nin(1-a’)+npsx

+(6—1)Zln(l+e’3"‘)—(6+1)Zln(a+eﬁ"‘) “.1)

oln(L) _ n_na’In(a) s px
By n.In(a)+9+—1_a9 +Zln(l+e ) Zln(a+e ) “2)

oin(L) _nd n_  noa’" x.e”

oo @ 1-a 1-do Z(a+eﬂxi)

(4.3)

oln(L) n - x.e” x.e”%
=X+ (0-1) Y o= (041) Y s
o B (1+e”) (a+e™) @)

The maximum likelihood estimates of «,8 and £ are the solutions of simultaneous equations (4.2),

(4.3) and (4.4). The solution of the four equations is not having a closed form. So numerical
technique such as Newton Rapson method can be employed to get a solution. For getting initial values
the tables for mean, variance, measure of skewness and Kurtosis can be used.

Now as in Bozidar et-al(2016) we study the existence and uniqueness of MLE when the other
parameters are known or given.

Theorem 4.1

oln(L) o . .
Letgl = there a and £ are known. Then their exist a unique solution for g1 = 0 for
0 e (0,0).
Proof :
We have , gl= n_|n(a)+ﬂ+m+z|n(1+eﬂxi )—ZIn(aJreﬂxi)

o a’ -1

Now

Lim gl= n.In(a)+g+ nlna(laz +Z|n(1+eﬂ"i )—Zln(a+eﬂxi):oo

6—0 -
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On the other hand
0
Lim gl:n'ln(a)‘kg_%n(la)‘kzm(l-i'eﬂx')—Zln(a+eﬂx')<o
G- o —

Therefore their exist at least one root, say 0 e (0,00) such that g1 = 0. To show uniqueness the first
derivative of gl is
o9l n nin(@)a™

00 6 (1_0[9)2 <0

Hence their exist a solution for g1=0 and the root of 0 is unique.

Theorem 4.2
olIn(L) . . .
Letg2 = a—where @ and £ are known. Then their exist a unique solution for g1 = 0 for
a
a €(0,0).
0-1 B
gzzn_e_ n +n¢9oc‘9_Z X.e
a l-a 1l-a (a+eﬁxi)
. . In@ n  nea’t x.e”%
2= —- + - ' =0
Lal_>rong Lal—!;n{a l-a 1-a° Z(aJreﬁX')]
Also
i . |n@ n  noa’t x.e”%
2= —— + — ! <0
IZng lT,L[.n[a l-a 1-a’ Z(onre’”)J
g2 -n@ n no*c™’ né nfo™° x.e”%
0 T2 2 ga 2 on 7+ 041 z T 2%
a o (l1-a) (a —a) (a —a) (a —a) (a+e )
092 nGo "’ x.e”% né n né*c’ né
—<0If >+ > <—+ 5+ 5+ 5
oo (a—n9+l —0!) (a +eﬂx, ) a (1—61) (a—6+l _a,) (afeu —0()
There for their exist at least one root say a € (0, oo) such that g2=0 provided condition is satisfied.
Theorem 4.3
oLogL

Let g3=7 Where ¢ and @ are known then their exist a unique solution for g3=0 for

B <€(0,)

n _ X.eﬁxi X_eﬂxi
3=— 0-1)) ———=—(0+1)) ————
g 'B—H']X-i-( )Z(l+eﬁxi) ( + )Z(a_'_eﬁxi)
: . |n - xe” xe’™
3— il 0-1)> ————(0+1)> ——— |=—Xn<0
LIM g3=Lim| e mee (002 gy =0 2 gy | =70

Also
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eﬁxi

X, ~ xe™ |__
L;[I] g3= |77|J;n ﬁ+nx+(¢9 1)Zm (9+1)Z(0(+eﬂxi) =

493 <01 0 x’e™” n x2e " 941 x2e "%
op Z(l ‘ ﬂx) <ﬁ2+z(1+e‘ﬂxi)2+( ’ )Z(lﬂxe‘ﬂxi)z

There for their exist at least one root say f € (0, oo) such that g3=0 provided condition is satisfied.

5. Order Statistics
Assume that X, X,,..., X, be a random sample from the population. Let X, , denot the ith order

statistics. The pdf of X, |

gi,n(x)_m g()[G(x)] [G(X)]

n! a? eﬂ(a _1) e (eﬁx _'_1)‘9
(i—l)!(n—i)!(aa _1) [a+eﬁx]e+1

e el ]
1-a' (0{+eﬁx)9 1-af (a+eﬂx)g

n a@(n—i+1)9ﬁ(1_a)

B(n-1i-1) (1—05‘9)“
e (1-e” )“[(Oﬁeﬂx )H —a’(1+e” )qil[(“eﬂx )0 ~(a+e” )9}

(a+eﬂx)n0

Define minimumas X ,, =min(X,, X,,...X,) and maximumas X, =max(X,, X,,...X, ) and

-1

gi,n (X) =

gi,n(x) =

n—i

the mediumas X, with  m=3. Therefore the pdf of minimum, maximum and median are

respectively

I it I L e ot
' (1—0{"7 )n (a +eﬁx)n9
o (") e” (1-¢") l[(“eﬂx ) o’ (1+e”)’ |
Ty (are" )"
T S SR ()

B(n-1,m-1) (1_a0)”

(10 arer) oo Tasef farerf T

(a+eﬂx)n9
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6. Stochastic orders

For the last 40 years stochastic orders have been using for many applications. Its uses are seen in areas
of probability and statistics such as realiability, survival analysis, queueing theory, biology
economics, Insurance and actuarial science. (See Shaked and Shanthikumar (2007). Let X and Y be

two random variable having distribution F and G respectively. Denote F = 1—F and G =1-G as
their survival functions. With pdf f and g. The random variable X is said to be smaller than Y (1) In
stochastic order denoted as X <, Y, If F(x) <G(x) for all x. (2) Likelyhood ratio order denoted as
X<, Y, IF f(x)/g(x) is decreasing in x>0 . (3) Hazard rate order denoted by X <, Y If
Y, If
F(X) <G(x) is decreasing in x>0. The four stochastic orders defined above are related to each

F(x)/G(x) is decreasing in x>0 . (4) Reversed hazard rate order denoted as X <

—rhr

other as the following implications.
X <

—rhr

YEXS,Y=2 XS, Y=>X Y

—st

4 0+1
f(x) _(ﬂ] af—l(aereﬂX] a, -1

9x) \a, ) o/ -1 a,+e™ ) a,-1

Since o, <,

(ﬂj/ - ﬁ(ﬂjg of 11 (o) e 0

9(x) a,) o -la,~1 (0(1+eﬂx)6+2

Hence (x)/g(x) i decreasing in x. That is XY The remaining statements follows from the
implications above

Application

Consider the real data below, of the strength measured in GPA for single-carbon fibers data
as an example

The strength measured in GPA for single-carbon fibers data

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518,
2.522, 2,532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917,
2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243,
3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.537, 3.554, 3.562, 3.628,
3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020, 3.501, 3.562.

Table 5. Parameter estimates for single-carbon fibers data

Distribution | Parameters K-S K-S p-value
LOGISTIC | 6=0.1997 0.7123 | 0

SLD a=0.54,A=2.68, u=2.774 |0.0918 | 0.6632
NBLD a=3.34,0=0.054,=0.18 | 0.0693 | 0.8991
Conclusion

A special case of the logistic distribution, the NBL distribution is defined and studied.
Discussed about Quantile method of estimation, Maximum likelihood estimation, and Order
Statistics and Stochastic orders. Also test the goodness of fit for a real data set and found the
logistic distribution fails and NBLD more suitable than skew logistic distribution (SLD). The
NBL distribution provides a very flexible model for fitting of such kind of data. It is hoped
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that it will serve as an alternative to related but less versatile models that are currently in use
for modeling data sets occurring in various areas of scientific investigation such as
engineering, survival analysis, hydrology and economics.
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