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Abstract:  

In this research paper we begin with study of family of n dimensional hyper cube graphs and establish 

some properties related to their distance, spectra, and multiplicities and associated eigen vectors and 

extend to bipartite double graphs[11]. 

In a more involved way since no complete characterization was available with experiential results in 

several inter connection networks on this spectra our work will add an element to existing theory. 
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1) Introduction: an n dimensional hyper cube nQ [24] also called n-cube is an n dimensional analogue 

of Square and a Cube. It is closed compact convex figure whose 1-skelton consists of groups of 

opposite parallel line segments aligned in each of spaces dimensions, perpendicular to each other and of 

same length. 

1.1) A point is a hypercube of dimension zero. If one moves this point one unit length, it will sweep out 

a line segment, which is the measure polytope of dimension one. If one moves this line segment its 

length in a perpendicular direction from itself; it sweeps out a two-dimensional square. If one moves the 

square one unit length in the direction perpendicular to the plane it lies on, it will generate a three-

dimensional cube. This can be generalized to any number of dimensions. For example, if one moves the 

cube one unit length into the fourth dimension, it generates a 4-dimensional measure polytope or 

tesseract. 

The family of hypercubes is one of the few regular polytopes that are represented in any number of 

dimensions. The dual polytope of a hypercube is called a cross-polytope. 

A hypercube of dimension n has 2n "sides" (a 1-dimensional line has 2 end points; a 2-dimensional 

square has 4 sides or edges; a 3-dimensional cube has 6 faces; a 4-dimensional tesseract has 8 cells). The 

number of vertices (points) of a hypercube is 2n (a cube has 23 vertices, for instance). 
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The number of m-dimensional hyper cubes on the boundary of an n-cube is 

 

For example, the boundary of a 4-cube contains 8 cubes, 24 squares, 32 lines and 16 vertices. 

A unit hyper cube is a hyper cube whose side has length 1 unit whose corners are 
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A projection of hypercube into two-dimensiona image

 

2n
Points in 

nR  with each coordinate equal to 0 or 1 termed as measure polytope. 

The correct number of edges of cube of dimension n is 
1* 2nn −
 for example 7-cube has 

67 * 2 =448 

edges. 

   1.2) Dimension of the cube 

 1 2 3 4 5 6 

No. of 

vertices 

2 4 8 16 32 64 
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No. edges 1 4 12 32 80 192 

Here we define adjacency matrix of n cube described in a constructive way. 
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Since n nQ  is n regular bipartite graph of 2n
 vertices characteristic vector of subsets of 

[n] {1,2,3,...n}=  vertices of layer kL corresponds to subsets of cardinality k. 

If n is odd n=2k-1,the middle two layers 1,k kL L − of nQ with 
1,k knc nc −
vertices forms middle cube 

graph M kQ  by induction. 

As M kQ  is bipartite double graph which is a sub graph of n-cube nQ  induced by vertices whose 

binary representations have either k-1 or k no. Of 1’s is of k-regular as shown in figures below 

The middle cube graph MQ2 as a subgraph of Q3 or as the bipartite double graph of O2 = K3. 

 

 

 

 

 

 

We start with spectral properties of bipartite double graphs [17][18] and extend for study of eigen 

values of M kQ . 

1.3) Bipartite double graph: Let H= (V, E) be a graph of order n, with vertex set V = {1, 2…. n}. 

Its bipartite double graph ˆ1 , 1 H + − − H = ( ,V E ) is the graph with the duplicated vertex set 
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V  = {1,2… n.1',2 ',...n'  }and adjacencies induced from the adjacencies in H as follows: 

'

'

E

E

i j
i j

j i
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 


 

Thus, the edge set of H  is E  = {ij' | ij E} . From the definition, it follows that H  

Is a bipartite graph [24.21] with stable subsets 1V = {1, 2…. n}, and 2V = {1',2 ',...n'  }. For example, if H 

is a bipartite graph, then its bipartite double graphs H consists of two non-connected copies of H. 

 

 

Path p-4 and its bipartite Double Graph 

 

Graph H has diameter 2 and H  has diameter 3 

If H is a  -regular graph, then H also, if the degree sequence of the original graph H is  

 = ( 1 2 3, , .... n    ), the degree sequence for its bipartite double graph is  =( 1 2 3, , .... n    ,

1 2 3, , .... n    ) 
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The distance between vertices in the bipartite double graph H can be given in terms of the even 

And odd distances in H. 

(i, j) dist (i, j)

(i, j') dist (i, j)

HH

HH

dist

dist

+

−

=

=
 

Involutive auto orphism without fixed edges, which interchanges vertices i and i’ , the map from  

H Onto H defined  ' ,i i i i→ →  is a 2-fold covering. 

If  Ĥ  is extended bipartite double graph by adding edges (i,i’)f or each i V H  Ĥ . 

1.4) Notations: 

The order of the graph G is n = {V} and its size is m = {E}. We label the vertices with the integers 1,2,…, 

n. If i is adjacent to j, that is, ij E, we write i j or i
( )E

 j. The distance between two vertices is denoted 

by dist(I,j). We also use the concepts of even distance and odd distance between vertices, denoted by 

dist+ and dist -, respectively. They are defined as the length of a shortest even (respectively, odd) walk 

between the corresponding vertices. The set of vertices which are L-apart from vertex i, with respect to 

the usual distance, is ( ) { : (i, j)l i j dist l = = , so that the degree of vertex  is simply ( )l i . The 

eccentricity of a vertex is  

ecc(i)=
11max (i, j)

j nX dist
 

max1j_n dist(i; j) andthe diameter of the graph is D =D(G) 

11max (i, j)
j nX dist

 
graph G` has the same vertex set as G and two vertices are adjacent in G` if and only 

if they areat distance l  in G. An antipodal graph G is a connected graph of diameter D for which GD isa 

disjoint union of cliques. The folded graph of G is the graph G whose vertices are the maximal cliques. 

Let G = (V;E) be a graph with adjacency matrix A and  -eigenvector v. Then, the charge of vertex i   V 

is the entry vi of v, and the equation A = . eigenvalues of the bipartite double graph[11,16]G  and 

the extended bipartite double graph Ĝ  as functions of the eigenvalues of a non-bipartite graph G. 

We study some more results which are less elementary but relevant on spectra multiplicities of associated 

eigen vectors extended to bipartite double graphs. 

2)Eigenvalues of the Graphs: 

Definition 1. For a matrix
*m nA R , a number   is an eigenvalue if for some vector x  0, 

Ax =  x. 

The vector x is called an eigenvector corresponding to  . 
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Some basic properties of eigenvalues are 

• The eigenvalues are exactly the numbers  that make the matrix A- Isingular, i.e. solutionsof 

det(A- I) = 0. 

• All eigenvectors corresponding to  form a subspace V ; the dimension of V is called 

themultiplicity of  . 

• In general, eigenvalues can be complex numbers. However, if A is a symmetric matrix 

( )ij jia a= , then all eigenvalues are real, and moreover there is an orthogonal basis consisting 

ofeigenvectors. 

• The sum of all eigenvalues, including multiplicities, is 1 1( )n n

i i i ijTr A a= = = = the 

trace of A. 

• The product of all eigenvalues, including multiplicities, is 1 det( )n

i i A= = the determinant 

of A. 

• The number of non-zero eigenvalues, including multiplicities, is the rank of A. 

For graphs, we define eigenvalues as the eigenvalues of the adjacency matrix. 

Definition 2. For a graph G, the adjacency matrix A(G) is defined as follows: 

• 1 ( , ) ( )ija if i j E G=   

• 0 ( , ) ( )ija ifi jor i j E G= =   

Because Tr(A(G)) = 0, we get immediately the following. 

The sum of all eigenvalues of a graph is always 0. 

The (ordinary) spectrum of a graph is the spectrum of its (0,1) adjacency 

matrix. 

The graph on n vertices without edges (the n-coclique, nK ) has zero adjacency 

matrix, hence spectrum 0n
, where the exponent denotes the multiplicity 

Complete bipartite graphs 
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The complete bipartite graph ,m nK  has spectrum 
2,0m nmn + −  

More generally, every bipartite graph has a spectrum that is symmetric w.r.t. 

the origin: if  is eigenvalue, then also − , with the same multiplicity. 

The n-cube graph (called 2n
, or 

nQ ) is the graph with as vertices the binary 

vectors of length n, where two vectors are adjacent when they differ in a single 

position. The 0-cube is 
1K , the 1-cube is 

2K , the 2-cube is 
4C . 

The spectrum of 2n
consists of the eigenvalues n − 2i with multiplicity (0 )

n
i n

i

 
  

 
 

2.1 

The complete bipartite graph ,m nK has an adjacency matrix of rank 2, therefore we expect 

to have eigenvalue 0 of multiplicity n-2, and two non-trivial eigenvalues. These should be equal to  , 

because the sum of all eigenvalues is always 0. 

We find  by solving Ax =  x. By symmetry, we guess that the eigenvector x should have m 

Coordinates equal to  and n coordinates equal to   Then, 

( ,..., , ,..... )Ax m m n n   =  

This should be a multiple of ( ,..., , ,..., )x    = . Therefore, we get m = and n =  i.e. and 

2mn  = and mn =  

 

2.2 

A graph   is called bipartite when its vertex set can be partitioned into two disjoint parts 1 2X X such that 

all edges of   meet both 1X  and 2X . The adjacency 

matrix of a bipartite graph has the form 
0

0T

B
A

B

 
=  
 

. It follows that the spectrum of a bipartite graph 

is symmetric w.r.t. 0: if 
u

v

 
 
 

is an eigenvector with eigenvalue θ, then 
u

v

 
 
− 

 is an eigenvector with 

eigenvalue −θ.  
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For the ranks one has rkA = 2 rk B. If 
in = |Xi| (i = 1, 2) and n1 ≥ n2, then rkA ≤ 2n2, so that   has 

eigenvalue 0 with multiplicity at least n1 − n2. 

One cannot, in general, recognize bipartiteness from the Laplace or signless Laplace spectrum. For 

example, 1,3K  and 
1 3K K+ have the same signless Laplace spectrum and only the former is bipartite.  

However, by Proposition below, a graph is bipartite precisely when its 

Laplace spectrum and signless Laplace spectrum coincide. 

 

 

 

 

2.3) Elementary Graphs associated Eigen values: 

 

Table 2.2 

2.4Characteristic polynomial: 

Let    be a directed graph on n vertices. For any directed subgraph C of  that is a union of directed 

cycles, let c(C) be its number of cycles. Then the characteristic polynomial 

pA(t) =det(tI −A) of   can be expanded as 
n i

iC t − where 
( )( 1)c C

i CC =  − with C running over 

all regular directed sub graphs with in- and outdegree 1 on i vertices. 

(Indeed, this is just a reformulation of the definition of the determinant as

1 (1) ( )det sgn( ) ... n nM M M  =  Note that when the permutation σ withn−i fixed points is 
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written as a product of non-identity cycles, its sign is ( 1)e− .where e is the number of even cycles in this 

product. Since the number of oddnon-identity cycles is congruent to i(mod 2), we have 

( .)  1( ) ( ) )i csgn  += −  

For example, the directed triangle has 0 31, 1c c= = − . Directed edges thatdo not occur in directed 

cycles do not influence the (ordinary) spectrum. 

The same description of ( )Ap t holds for undirected graphs (with each edgeviewed as a pair of opposite 

directed edges). 

Since det( ) det( )xx

d
tI A

dt
tI A = −−  where xA is the submatrix of Aobtained by deleting row 

and column x, it follows that ( )Ap t is the sum of thecharacteristic polynomials of all single-vertex-

deleted subgraphs of  . 

The spectrum of the complete bipartite graph
2

, ,  0m n

m nK is mn + − . The Laplace spectrum is 

1 1 1 10 , ( ) ,  ,n mm n m n− − +  

The largest eigenvalue of a graph is also known as its spectral radius or index. The basic information 

about the largest eigenvalue of a (possibly directed) graph is provided by Perron-Frobenius theory as 

follows. 

2.5 Proposition: 

 Each graph   has a real eigenvalue 0  with nonnegative real 

Corresponding eigenvector, and such that for each eigenvalue θ we have |θ| ≤ 0 . 

The value 0  ( ) does not increase when vertices or edges are removed from  . 

Assume that   is strongly connected. Then 

(i) 0  has multiplicity 1. 

(ii) If   is primitive (strongly connected, and such that not all cycles have a 

length that is a multiple of some integer d >1), then |θ| < 0  for all 

eigenvalues θ different from 0 . 

(iii) The value 0 ( ) decreases when vertices or edges are removed from   
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Now let   be undirected. By Perron-Frobenius theory and interlacing we 

find an upper and lower bound for the largest eigenvalue of a connected graph. 

(Note that A is irreducible if and only if   is connected.) 

Among the connected graphs  , those with imprimitive A are precisely the bipartite 

graphs (and for these, A has period 2) is illustrated from the following proposition.   

 

2.6 Proposition : 

 (i) A graph   is bipartite if and only if for each eigenvalue θ of  , also −θ is an eigenvalue, with the 

same multiplicity. 

(ii) If   is connected with largest eigenvalue 1 , then   is bipartite if and only 

if 1−  is an eigenvalue of  . 

Proof. For connected graphs all is clear from the Perron-Frobenius theorem. 

That gives (ii) and (by taking unions) the ‘only if’ part of (i). For the ‘if’ part 

of (i), let 
1  be the spectral radius of  . Then some connected component of   

Has eigenvalues 
1  and 1− , and hence is bipartite. Removing its contribution 

to the spectrum of  , we see by induction on the number of components that all 

Components are bipartite. 

We establish some more theorems extended on spectra and multiplicities and associated eigen which are 

extended to bipartite double graphs. 

3) Theorem: Let F be a field and let R be a commutative sub ring of
n*F n

, the set of all n *n 

Matrices over F. Let M 
*mmR  , then 

det  (M) = det (det (M))F F R  

 det  (M) = det (AD -BC).F F  for a bipartite double graph characteristic polynomial. [13] 

We prove the following theorems showing geometric multiplicities of eigen value   of H   geometric 

multiplicities of eigen values   and − of H  

1 , 1 + − − of Ĥ  
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3.1) Theorem: Let H be a graph on n vertices, with the adjacency matrix A and characteristic 

'

'

(1 )

( )  =
E E

i i

i j i i

j i j i

u u v

u u j v v u



 

+

+
+ +

= +

= = = 
 polynomial 

H (x). Then, the characteristic polynomials of  H and 

Ĥ are, respectively, 

 

(x) = (-1) (x) (-x),

(x) = (-1) (x-1) (-x-1).

n

H H
H

n

H H
H


  

  
 

Adjacency matrices are, respectively, 

0 O A + I
and .

0 A + I O

A
A A

A

   
= =   
   

 

By above corollary  

2 2

2n

n

xI -A
(x) = det(xI ) = det = det(x I -A )

-A xI

           = det(xI  -A) det(xI + A) = (..1) (x) (-x);

n

n
H

n

n n H H

A
 

 −  
 

 

 

Whereas, the characteristic polynomial of H


 is 

2n

2 2

n

xI -A-I
(x) = det(xI ) = det

-A-I xI

           = det(x I -(A+I ) )= det(xI  -(A+I )) det(xI + (A+I )) 

           =det((x-1)I )( 1) det( ( 1)I )

           = (-1) (x-1) (-x-1).

n n

H
n n

n n n n n n

n

n n

H H

A

A x A

  
 −  

 

− − − + −

 

 

3.2) Theorem: Let H be a graph and v a  -eigenvector H. Let us consider the vector u+ with 

Components 'i iu u+ += = iv , u- with components i iu v− = and 'i iu v− = −  for 1 , 'i i n   

Then, 

u +  -eigenvector H  and (1 )+ eigenvector H


 

u - -eigenvector H  and ( 1 )− − eigenvector H


 

Given vertex i,1 i n  , all its adjacent vertices are of type j’, with i (E)  j.  
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Then 

'

(A )  =
E E

i j i i

j i j i

u u j v v u 
+

+ += = =   

Given vertex I’,1 i n  , all its adjacent vertices are of type j, with i (E)  j.  

Then 

'

' '

(A )  =
E E

i j i i

j i j i

u u j v v u 
+

+ += = =   

By a similar reasoning with u −
, we obtain 

'

(A )  = '
E E

i j i

j i j i

u u j v u
+

−

−= − = −   and 

'

'

'

(A )  =
E E

i j i

j i j i

u u j v u
−

− = = −   

0 5 0

1 4 1

2 3 2

( ) ( ) ( ) 1,

( ) ( ) ( ) 4,

( ) ( ) ( ) 5,

m m m

m m m

m m m

  

  

  







= = =

= = =

= = =

 u −
 is - -eigenvector of bipartite double graph H . 

Also 1+ ,-1-  are eigen values for u +
, u

−
eigen vectors of H



 

From the above figures realizing an isomorphism [8, 2] defined by   

: [O ] V[MQ ]k kf V →  

u u

u' u
 

is clearly bijective, according to the definition of bipartite double graph , if u and 

'v  Are two vertices of Ok
. 

The middle cube graph [MQ ]k with D=2k-1 by above corollary is isomorphic to Ok
. 

We prove spectrum of  2 1kQ −  contains all eigen values of[MQ ]k , 

= (-1) (k-i) and = i

i i i  + − += −  for 0 1i k  −  
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With multiplicities 
21

( ) m( )i i

kk
m

ik
 + −  −

= =  
 

 

 

 

4) Conclusion: 

In Verification of the above results, 

2

3

4 5

5

6 14 14

7

8 27 48 42

9

{ 2, 1 }

{ 3, 2 , 1 }

{ 4, 3 , 2 , 1 }

{ 5, 4 , 3 , 2 , 1 }

spMQ

spMQ

spMQ

spMQ

=  

=   

=    

=     

 

For highest degree Distance polynomials of [MQ ]k  

 p5 (3) = p5 (1) = p5 (-1) = 1 and p5 (2) =p5 (-1) = p5 (-3) = -1. Then, 

0 5 0

1 4 1

2 3 2

( ) ( ) ( ) 1,

( ) ( ) ( ) 4,

( ) ( ) ( ) 5,

m m m

m m m

m m m

  

  

  







= = =

= = =

= = =
 

 

                       

References: 

 

1) A.E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer, Berlin 

(1989). 

2) B. Mohar, Eigenvalues, diameter and mean distance in graphs, Graphs Combin. Theory Ser.B 68 

(1996), 179–205. 

3) C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, London/New York (1993). 

4) C. D. Godsil, More odd graph theory, Discrete Math. 32 (1980), 205–207. 

5) C. D. Savage, and I. Shields, A Hamilton path heuristic with applications to the middle two levels 

problem, Congr. Numer. 140 (1999), 161–178. 

6) C. Delorme, and P. Sol´e, Diameter, covering index, covering radius and eigenvalues, EuropeanJ. 

Combin. 12 (1991), 95–108. 

            distance-regular graphs, J. Graph Theor. 27 (1998), 123–140. 

7) E. R. van Dam, and W. H. Haemmers, Eigenvalues and the diameter of graphs, Linear and 

Multilinear Algebra 39 (1995), 33–44. 

8) F. Harary, J. P. Hayes, and H. J. Wu, A survey of the theory of hypercube graphs, Comp.Math. 

Appl. 15 (1988), no. 4, 277–289. 



  Journal of Cardiovascular Disease Research 

                                                                                                                    ISSN:0975-3583,0976-2833       VOL12,ISSUE01,2021 

 
9) F. R. K. Chung, Diameter and eigenvalues, J. Amer. Math. Soc. 2 (1989), 187–196. 

10) Havel, Semipaths in directed cubes, in M. Fiedler (Ed.), Graphs and other Combinatorial Topics, 

Teunebner–Texte Math., Teubner, Leipzig (1983). 

11) I.Bond, and C. Delorme, New large bipartite graphs with given degree and diameter, A Combin. 

25C (1988), 123–132. 

12) J. Hoffman, On the polynomial of a graph, Amer. Math. Monthly 70 (1963), 30–36. 

13) J. R. Silvester, Determinants of block matrices, Maths Gazette 84 (2000), 460–467. 

14) J. Robert Johnson, Long cycles in the middle two layers of the discrete cube, J. Combin. Theory 

Ser. A 105 (2004), 255–271. 

15) K. Qiu, and S. K. Das, Interconnexion Networks and Their Eigenvalues, in Proc. of 2002 

International Sumposiym on Parallel Architectures, Algorithms and              Networks,ISPAN’02,pp. 

163–168. 

16) M. A. Fiol, Algebraic characterizations of distance-regular graphs, Discrete Math. 246 

(2002), 111–129. 

17) M. A. Fiol, E. Garriga, and J. L. A. Yebra, Boundary graphs: The limit case of a spectral 

property, Discrete Math. 226 (2001), 155–173. 

18) M. A. Fiol, E. Garriga, and J. L. A. Yebra, Boundary graphs: The limit case of a spectral property 

(II), Discrete Math. 182 (1998), 101–111. 

19) M. A. Fiol, E. Garriga, and J. L. A. Yebra, From regular boundary graphs to antipodal 

20) M. A. Fiol, E. Garriga, and J. L. A. Yebra, On a class of polynomials and its relation with the 

spectra and diameter of graphs, J. Combin. Theory Ser. B 67 (1996), 48–61. 

21) M. A. Fiol, E. Garriga, and J. L. A. Yebra, On twisted odd graphs, Combin. Probab. Comput.9 

(2000), 227–240.  

22) M.A. Fiol, and M. Mitjana, The spectra of some families of digraphs, Linear Algebra Appl.423 

(2007), no. 1, 109–118. 

23) N. Alon and V. Milman, _1, Isoperimetric inequalities for graphs and super-concentrators, 

J.Combin. Theory Ser. B 38 (1985), 73–88. 

24) N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge (1974), 

secondedition (1993). 

25) N. Biggs, An edge coloring problem, Amer. Math. Montly 79 (1972), 1018–1020. 

26) N. Biggs, Some odd graph theory, Ann. New York Acad. Sci. 319 (1979), 71–81. 

27) T. Balaban, D. Farcussiu, and R. Banica, Graphs of multiple 1; 2-shifts in carbonium ions and 

related systems, Rev. Roum. Chim. 11 (1966), 1205–1227. 

28) J.Robert Johnson, Long cycles in the middle twp layers of the diserete cube, J. Combin. heors 

Ser. A 105 (2004). 255-271. 

29) C D. Savage. and 1. Shields, A Hamilton path heuristic with applications to the midkdle two 

levels problem, Congr, Numer, 140 (1999). 161–178.  

30) J. R. Silvester, Determinants of block matrices, Maths Gazette 84 (2000), 460-467. 


