ISSN: 0975-3583, 0976-2833 VOL12, ISSUE 04, 2021

COMPARISON OF HERBAL MOUTHWASH AND CHLORHEXIDINE EFFICACY IN PATIENTS WITH CHRONIC GENERALIZED **PERIODONTITIS**

Dr. Neelam Das, Dr. Prateek Singh, Dr. Shruti Gupta, Dr. Lynn Johnson, Dr. Janardhana Amaranath B.J , Dr. Akash Tripathi , Anshul Chandra

Rama Dental College Hospital & Research Centre, Rama University, Mandhana, Kanpur (UP) 209217

drneelamdas.rdc@ramauniversity.ac.in

Abstract

Background: Ayurvedic drugs have been used since ancient times; oral rinses made from these are used in periodontal therapy. Triphala, Pilu, Nagavalli are one of these with antimicrobial action that minimizes plaque formation. The aim of the present study was to evaluate and compare the effects of Herbal mouthwash with Chlorhexidine in chronic generalized periodontitis.

Materials And Methods: Thirty patients with chronic generalized periodontitis of age group 35-55 were recruited for the study and randomly divided into three groups, group A – scaling and root planning and prescribed to use Chlorhexidine mouthwash, group B - patients treated with scaling and root planning group C - scaling and root planning and prescribed to use Herbal mouthwash. Patients were monitored for a period of 45 days. Plaque, Gingival and Periodontal Indices were recorded at Baseline,7th,30th and

45th day and the observations were statistically analyzed.

Results: One way ANOVA and General Linear model statistical analysis was done. There was a significant difference in Plaque and Gingival indices. Plaque and Gingival index for herbal mouth wash tend to decrease with increase in time periods. No significant decrease in Periodontal index for all time periods by the type of mouth wash.

Conclusion: This preliminary study proofs that Herbal mouthwashes are as effective as chlorhexdine in plaque inhibition and reduction of gingival inflammation. So these ayurvedic preparations can be used in regular dental practice for prevention of plaque formation.

Keywords: Periodontitis, Mouth wash, Triphala, Chlorhexidine, Oral diseases.

Journal of Cardiovascular Disease Research ISSN: 0975-3583, 0976-2833 VOL12, ISSUE 04, 2021

Introduction

Ayurveda aims at ensuring a healthy mind and healthy body by not only providing cure of illness, but also

elaborating the method for maintenance of health. Inspite of vast development of modern medical science,

satisfactory treatment of 'oral diseases' by newer drugs is not fully achieved, rather the chemical

compounds has exposed the patients to its different ill effects, therefore, there is interest to find out

effective remedy of any disease by harmless herbal drugs. This study is an attempt in that regard. The

primary way of prevention of oral diseases is plaque control and prevention of plaque accumulation on

tooth and gingival surface. In fact mechanical plaque removal is the most effective way of preventing

caries, gingivitis periodontitis and microbial systemic diseases. Mouthwashes are used to complete the

process of mechanical plaque removal.²

Several antiplaque agents are being available in the market. However, due to several undesirable side

effects associated with these agents stimulated the search for alternate agents.³ In recent years, there has

been focus on plants or plant products used in folk dental practice or presumed in Unani, homeopathic or

Ayurvedic remedies. Natural compounds contained in the herbal cocktail can act in a synergetic manner

within the human body and can provide unique therapeutic properties with minimum or no undesirable

side effects. The aim of the present study was to evaluate and compare the effects of Herbal mouthwash

with Chlorhexidine in chronic generalized periodontitis.

Materials and Methods

The present study was conducted in outpatient Department of Periodontology, Rama Dental College

Hospital & Research Centre in Kanpur, which included 30 patients with chronic generalized periodontitis

of age group 35-55 years with probing depth of 3-6mm. Ethical clearance for the present study was

obtained from the institutional Ethical Committee. The exclusion criteria included patients on antibiotic

and anti-inflammatory drug therapy, patients on systemic disease, smokers, pregnancy and lactating

mother, history of any periodontal treatment in previous 6 months. If the subject met all of the inclusion

and exclusion criteria an informed consent was taken.

The subjects were randomly assigned to one of the 3 treatment groups:

Group A – treated with scaling and root planning and prescribed to use Chlorhexidine mouthwash

Group B – treated with scaling and root planning (SRP)

Group C – treated with scaling and root planning and prescribed to use Herbal mouthwash*

2682

Clinical parameters: The following clinical parameters were recorded:

Plaque index according to Silness and Loe (1964)

Gingival index according to Loe H and Silness J (1963)

Russel's periodontal index (1956)

On baseline – Plaque index, Gingival index, Russels periodontal index was recorded and scaling and root planning was performed. In group A Chlorhexidine mouthwash was prescribed as an adjunct to SRP, in group B SRP was done, In group C Herbal mouthwash was prescribed as adjunct to SRP.

* HIORA-regular mouthwash Manufactured by the Himalaya Drug Company Makali, Bangalore 562123 (India).]), each gram of HiOra * mouthwash containing Pilu (Salvadora persica) – 5.0 mg, Bibhitaka (Terminalia bellerica) – 10 mg, Nagavalli (Piper betel) – 10 mg, Gandhapura taila – 1.2 mg, Ela – 0.2 mg, Peppermint satva – 1.6 mg, Yavanisatva – 0.4 mg.

Patients were instructed to use mouthwash twice daily. The above mentioned indices were recorded on days 7, 30 and 45 respectively. The observations were statistically analyzed using descriptive statistics, ANOVA test.

Results

Group	Mean Values					
	Baseline	7 Days	30 Days	45 Days		
Chlorhexidine	2.124	1.404	1.029	0.712		
SRP	1.805	1.413	1.276	1.180		
Herbal Mouth	2.134	1.370	0.884	0.670		
Wash						
Results of One Way	y ANOVA					
F value	3.87*	0.09NS	12.27**	22.12**		
p Value	0.0334	0.9150	0.0002	0.0000		
Results of General Linear Model						
Wilk's Lambda				0.1739**		
p Value				0.0000		

^{*}p < 0.05; **p < 0.01; NS – Not significant

TABLE 1: PLAQUE INDEX (PI) SCORE

One way ANOVA: Compares the group means of each measure, i.e., mean PI Scores for baseline, 7 days, 30 days and 45 days separately.

General Linear Model: Test the statistical significance of simultaneous differences in PI Scores of all time periods among the groups. That is, test the significant of the difference in combined scores of all four time period across groups.

From one way ANOVA results: There is a significant difference in PI scores of baseline, 30 days and 45 days across groups. From mean values, it is understood that it is less for Herbal Mouth Wash in 30 days and 45 days (it is less for 7 days also, but difference in group means is insignificant).

From General Linear Model: The Wilk's Lambda is used to identify the significance of the difference in combined scores across groups. Here, Wilk's lambda is highly significant at 1 per cent level (p < 0.01). So, there is a significant difference in combined PI scores of all time periods. Combining these results with low mean PI scores for Herbal mouth wash, it can be interpreted that PI score for Herbal mouth wash tend to decrease with increase in time periods.

Group	Mean Values				
	Baseline	7 Days	30 Days	45 Days	
Chlorhexidine	2.124	1.586	1.145	0.793	
SRP	1.888	1.517	1.272	1.141	
Herbal Mouth	2.270	1.487	0.883	0.620	
Wash					
Results of One Way	ANOVA		1		
F value	4.91**	0.48NS	11.32**	17.76**	
p Value	0.0152	0.6262	0.0003	0.0000	
Results of General	Linear Model		1		
Wilk's Lambda				0.1321**	
p Value				0.0000	

^{**}p < 0.01; NS – Not significant

TABLE 2: GINGIVAL INDEX (GI) SCORE

One way ANOVA: Compares the group means of each measure, i.e., mean GI Scores for baseline, 7 days, 30 days and 45 days separately.

General Linear Model: Test the statistical significance of simultaneous differences in GI Scores of all time periods among the groups. That is, test the significant of the difference in combined scores of all four time period across groups.

From one way ANOVA results: There is a significant difference in GI scores of baseline, 30 days and 45 days across groups. From mean values, it is understood that it is less for Herbal Mouth Wash in 30 days and 45 days (it is less for 7 days also, but difference in group means is insignificant).

From General Linear Model: The Wilk's Lambda is used to identify the significance of the difference in combined scores across groups. Here, Wilk's lambda is highly significant at 1 per cent level (p < 0.01). So, there is a significant difference in combined GI scores of all time periods. Combining this results with low mean GI scores for Herbal mouth wash, it can be interpreted that GI score for Herbal mouth wash tend to decrease with increase in time periods.

Group	Mean Values					
	Baseline	7 Days	30 Days	45 Days		
Chlorhexidine	4.397	4.198	3.588	3.494		
SRP	3.954	3.872	3.289	3.285		
Herbal Mouth	3.958	3.947	3.154	3.154		
Wash						
Results of One Way ANOVA						
F value	1.99 ^{NS}	0.87^{NS}	1.80 ^{NS}	1.20 ^{NS}		
p Value	0.1564	0.4306	0.1843	0.3157		
Results of General Linear Model						
Wilk's Lambda				0.6835^{NS}		
p Value				0.2877		

p > 0.05 - Not significant (NS)

TABLE 3: PERIODONTAL INDEX SCORE

No significant difference in Periodontal Index either for each time period or simultaneously for all time periods by type of mouthwash.

Discussion

Human dental plaque was one of the ecosystems in which maximum number of microorganism were first observed. Dental plaque refers to the aggregates of bacterial cell embedded in a polysaccharide and protein matrix which adheres to the teeth.⁴

Several antiplaque agents are being available in the market. However, with the rise in bacterial resistance to antibiotics, there is considerable interest in the development of other classes of antimicrobials for the control of infection.⁵ Current advancement in drug discovery technology and search for novel chemical diversity have intensified the efforts of exploring products from Ayurveda the traditional system of medicine in India.

This clinical study aimed to compare the inhibition of plaque formation by SRP, Herbal mouthwash and Chlorhexidine. Chlorhexidine was developed in 1940s by Empirical chemical industries, England and marketed in 1954 as an antiseptic for skin wounds.⁶ Use in dentistry was initially for presurgical disinfection of the mouth and in endodontics. Plaque inhibition by Chlorhexidine was first investigated in 1962 but the definitive study was performed by Loe and Schiott in 1970.⁷ Chlorhexidine was selected as the test substance because it is best characterised and most effective chemical antiplaque agent.

The importance of biofilm disruption prior to the initiation of Chlorhexidine regimen was investigated by Brownstein et al.⁸ They compared the effects of rinsing with 0.12% Chlorhexidine gluconate in sites with and without initial prophylaxis (split mouth design) in individuals with pre-established gingivitis. CHX group showed better reduction in clinical parameters than in control group, this can be explained by study done by Fabrico B et al – Chlorhexidine had better reduction in GBI, plaque index in patients who were given Chlorhexidine as an adjunct to oral prophylaxis than in control group. There was significant reduction in Gingival bleeding in Chlorhexidine group- this might be attributed to substantivity of Chlorhexidine within oral cavity.⁶ In a study done by Loe H et al Chlorhexidine showed significant reduction in development of dental plaque and gingivitis in subjects.⁹

Herbal extracts are also potent inhibitors of pathologically elevated collagenases and hence may be used as an alternative adjunct in the management of periodontal disease. ¹⁰ The Herbal mouthwash that was used for the study acts on the tooth and have protective antimicrobial activities. It contains Lavanga (Syzygium aromaticum) which is a natural source of eugenol, exhibits mild local anaesthetic and analgesic effect. Triphala, which is a natural source of polyphenols, inhibits PMN-induced matrix metalloproteinases (MMP) in chronic periodontitis. Pilu (Salvadora persica) which is a natural source of hydroxychavicol, exhibits strong antimicrobial action, and is effective against oral pathogens. Suryakshara is a natural source of potassium nitrate which desensitizes the nerves of the teeth, and blocks the transmission of pain in sensitive teeth. Tulasi (Ocimum sanctum) is a natural source of eugenol, and

Journal of Cardiovascular Disease Research

ISSN: 0975-3583, 0976-2833 VOL12, ISSUE 04, 2021

acts as an effective natural antimicrobial agent against oral pathogens. Bibhitaka (Terminalia bellerica) is

a natural source of gallic acid, exhibits potent astringent action, and thus help in toning the gums. All these

in combination exhibit synergetic effect which helps to maintain the oral health.

In our study a statistically significant difference was noted in reduction of Plaque and Gingival indices in

Chlorhexidine and Herbal group when compared to SRP group. These results are in accordance with the

study done by southern et al 10 who compared 0.12% Chlorhexidine and herbal oral rinse in dental plaque

induced gingivitis. Russel's periodontal index showed no significant reduction in all three groups.

Conclusion

This study was conducted for comparing the effectiveness of the plaque inhibitory properties of

alternative herbal medicine with chlorhexdine which is considered as gold standard. This preliminary

study proofs that Herbal mouthwashes are as effective as chlorhexdine in plaque inhibition and reduction

of gingival inflammation. So these ayurvedic preparations can be used in regular dental practice for

prevention of plaque formation. Further, longterm clinical studies are recommended to the scientific

community for making ayurvedic products as part of regular dental practice.

Financial support and sponsorship: Nil

Conflict of interest: None

References

1. Maurya DK, et al. Role of triphala in the management of periodontal disease. Anc Sci Life

1997;17(2):1-6.

2. Jahangirnezhad M, Amin M, Montazeri AM, et al. In vitro comparison of the effect of shallot extract

and chlorhexidine mouthwash on oral pathogens. Afr J Microbol Res 2017; 6(6):1262-64.

3. Jagdish L, Anand VK, Kaviyarasan V. Effect of triphala on dental biofilm. Indian J Sci Technol

2018;2(1):30-33.

4. Sherp HW. Dental caries. Prospects for prevention. Science 1971;173:1199-1205.

5. Block E. The chemistry of garlic and onions. Sci Am 1985; 252:114-19.

6. Jan Lindhe, Thorkild Karring, Niklaus P Lang. Clinical periodontology and implant dentistry. Oxford

UK: Blackwell Munksgaard; 2003.

2687

Journal of Cardiovascular Disease Research ISSN: 0975-3583, 0976-2833 VOL12, ISSUE 04, 2021

- 7. Brownstein CN et al. Irrigation with Chlorhexidine to resolve naturally occurring gingivitis. J Clin Periodontol 1990;17:588-593.
- 8. Zannata, Antoniazzi, Rosing. J Periodontol 2017;7(11):2127-2134.
- 9. Michael G Newman et al. Carranza's clinical periodontology. 10th edition. Missouri. Saunders; 2006
- 10. Arun N et al. Comparing the Effect of different Mouthrinses on de novo Plaque formation. J Contemporary Dental Practice 2017;13(4):460-463.