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Abstract 

Marked by a progressive decline in the function of tissues and organs that ultimately results in death,Aging is a 
biological conditionTelomeres, are repetitive DNA sequences necessary for cell fate and aging. Telomeres 
shorten when cells mature, resulting in cellular senescence and mitochondrial dysfunction.. “Cellular senescence 
and mitochondrial malfunction” will then result in organ or tissue degeneration and dysfunction, as well as a 
variety of somatic ageing mechanisms. We summarized the relationship between cell senescence, mitochondrial 
dysfunction, and aging in this paper. 
 

1. INTRODUCTION 

Mammalian telomeres consist of “TTAGGG” repeats in humans and mice ranging from 5 kb to 100 kb 
respectively and are associated with shelterin, a protein complex (de Lange 2005).However, due to the "mid-
replication issue" and telomere end processing, telomeres gradually shorten with cell division (Wu et al. 2012). 
Shelterin can lose its binding site when telomeres exceed a critical length and telomeric DNA is unable to form 
a protective secondary structure. While its biological mechanisms remain largely unclear, the primary hallmark 
of ageing has been telomere attrition (“Lopez-Otin et al. 2013 and McHugh and Gil 2018”). “Cellular 
senescence and mitochondrial dysfunction” are two other major ageing hallmarks and can also be mediated by 
telomere shortening (“Sahin et al. 2011”). In this analysis, we start by explaining the structure and function of 
the telomerase.  
 

2. TELOMERE STRUCTURE AND FUNCTION 

Barbara McClintock and Herman Muller first hypothesised on advanced telomere structures that can protect the 
normal ends of linear chromosomes from the repair of aberrant DNA (McClintock 1941) as well as instability of 
genome (Lazzerini-Denchi and Sfeir 2016). 
Telomeric DNA in mammals consists of tandem repeats of TTAGGG which end in single-stranded G-rich thirty 
overhangs, recognized as G-overhangs (Moyzis et al. 1988). “The G-overhang will invade the double-stranded 
telomeric DNA that forms a lariat-like structure called the t-loop, observed by electron microscopy as well as 
stochastic optical reconstruction microscopy in functional telomeres (Doksani et al. 2013 and Griffith et al. 
1999). Telomeres can fold into a closed structure by creating t-loops to shield the chromosome ends from being 
detected by the DNA damage repair machinery as DNA double-strand breaks (Morgan et al. 2018). Telomeric 
DNA, called G-quadruplexes (Schaffitzel et al. 2001), is also likely to fold into nocanonical secondary 
structures and plays an important role in capping telomeres to maintain chromosomal integrity and inhibit DNA 
damage signals in telomeres (Ray et al. 2014 and Smith et al. 2011). In addition, the structure of telomeric G-
quadruplexes has been shown to limit telomer extension by affecting telomerase function (Oganesian et al. 
2006). In promoters and transcription start sites, G-quadruplexes structures are also found (Bedrat et al. 2016 
and Chambers et al. 2015).” Therefore, DNA replication,translationand transcription have regulatory roles 
(“Hansel-Hertsch et al. 2017 and Rhodes and Lipps 2015”). 
Telomerase is a “ribonucleoprotein complex made up of the catalytic core of telomerase reverse transcriptase 
and telomerase RNA”.Telomerase prolongs telomeres by tethering to the 3' end of DNA, using the telomerase 
reverse transcriptase's catalyzed reverse transcription as a guide.(“Jiang et al. 2018 and Wu et al. 2017”). “RNA 
polymerase II synthesizes noncoding telomeric repeat RNA by converting subtelomeric DNA to telomeric 
repeat sequences” (Schoeftner and Blasco 2008). “A telomeric repeat containing RNA has been identified as a 
component of telomeric heterochromatin, which is thought to act as a molecular scaffold for multiple protein 
enzymes that perform a variety of critical chromosome-end functions” (Azzalin and Lingner 2015) and 
contributes significantly to telomeric integrity (“Chu et al. 2017 and Montero et al. 2016”). Further research to 
investigate the association between telomeric repeat-containing RNA and telomerase should therefore be 
performed. With the exception of this telomeric repeat-containing RNA, R-loops will activate the DNA damage 
reaction at critically short telomeres (Graf et al. 2017). 
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Telomeres complexes known as shelterin complexes, which are associated with proteins that shield chromosome 
ends from DNA damage reaction and keep genome stability. (Blackburn et al. 2015).“Shelterin ends with 
telomeric DNA after recruitment to secure chromosomes. Shelterin binds specifically to telomeric DNA and 
protects telomeres by affecting the telomeric DNA structure, preventing DNA damage response directly from 
telomeres and preserving telomeric DNA by modulating telomerase activity (Benarroch-Popivker et al. 2016 
and Kibe et al. 2016).” 
 

3. TELOMERE, CELLULAR SENESCENCE AND AGEING 

DNA is replicated in a semi-conservative manner. “DNA replication is continuous in the direction of the 
advancing replication fork for the leading strand, but discontinuous for the lagging strand, which is formed by 
merging Okazaki fragments. Because DNA polymerase can only continue (but not initiate) a strand, Okazaki 
fragment formation requires an RNA primer generated by RNA polymerase.” Following the synthesis of 
Okazaki fragments, the “RNA primers” are removed and the internal gaps are filled with DNA using DNA 
polymerase I. The Okazaki fragments are subsequently joined using ligase. Due to DNA replication the 
relomere shortens.. This is Watson's 1972 "end-replication problem." (“1973; Olovnikov; Sugino et al., 1972; 
Watson, 1972”). However, inadequate replication is not the primary cause of telomere shortening. Following 
replication at leading-end telomeres, the G overhang is produced by the excision of five primary ends, which 
contributes significantly to telomere attrition (“Wu et al. 2012). Except for the end replication issue and 
resection of the telomere 5' end, telomere attrition rates are associated with a variety of other variables, such as 
reactive oxygen species, that may accelerate telomere shortening (Herbert et al. 2008”). Olovnikov (1973) 
related the Hayflick limit to telomere replication and indicated that telomere duration could decide the possible 
number of rounds of cell division (Olovnikov 1973). “In 1986, Cooke and Smith specifically related telomeres 
to cell ageing when they compared telomere lengths in different tissues (Cooke and Smith 1986). Over the next 
few years, researchers have found that because telomerase extends the telomeres, the replicative ability of 
human cells increases. These studies demonstrated that progressive shortening of telomeres is indeed the 
primary factor contributing to senescence (Allsopp et al. 1992 and Harley et al. 1992).”Telomeres are known as 
the "molecular clocks" of cells (“Muezzinler et al. 2013”). Telomeres gradually lose their protective structure 
and proteins, finally causing replicative senescence via DNA damage response mechanisms (Morgan et al. 
2018). In somatic cells lacking telomerase production, telomeres shorten with each replication cycle, and when 
crucial telomere shortening occurs, short telomeres are identified as double-strand DNA breaks (Arnoult and 
Karlseder 2015). The DNA damage response is triggered by double-strand breaks, which triggers a signaling 
cascade that culminates in the activation of the ATM kinase p533 (“Roake and Artandi 2017 and Wang et al. 
2011”). In most malignancies, the tumor suppressor P53 is tightly regulated and dormant, but it becomes active 
in senescent cells due to a posttranslational change (Itahana et al. 2001). P21 was the first to be found, and it 
inhibits Cdk2 through inhibiting pRb phosphorylation. Hypophosphorylated Rb interacts to transcription factors, 
particularly E2Fs, which are involved in cell growth, and the cell cycle is stopped at the G1 phase.(“Beausejour 
et al. 2003; Harper et al. 1993; Shay et al. 1991 and Xiong et al. 1993”). Telomerase, which solves the 
endreplication problem, is essential for telomere length maintenance in these cells (“Borah et al. 2015; Kim et 
al. 1994 and Morin 1989”). Shelterin is a compound that attracts telomerase to telomeres and allows for 
telomere extension. 
Numerous studies have established a possible link between telomere length and aging. It would prolong the lives 
of mice by restoring the function or duration of telomeres, and telomerase gene therapy might be used to treat 
premature aging and delay physical aging in animals (“Armanios et al. 2009; Bernardes de Jesus et al. 2012; 
Derevyanko et al. 2017 and Steenstrup et al. 2017”). Senescence induces tiredness and a reduction in stem cell 
function, impairing tissue breakdown. (Bernet et al. 2014). Senescent cells, however, can force stem cells to re-
enter the cell cycle via the secretory phenotype associated with senescence, which accelerates stem cell fatigue 
(“Cosgrove et al. 2014 and Sousa-Victor et al. 2014”). 
Senescence has the potential to alter the optimal functioning of stem cells non-autonomously via the senescence-
associated secretory phenotype, in addition to impacting stem cells by causing a protracted growth stop. (“Brack 
et al. 2007; Jang et al. 2011 and Pricola et al. 2009”). “Senescent cells secrete hundreds of factors that manifest 
drastic changes in their secretome called the senescence-associated secretory phenotype which is enriched with 
proinflammatory cytokines, growth factors of chemokine and proteases (Coppe et al. 2010 and Kuilman and 
Peeper 2009). Emerging research using genetic systems or drugs that remove senescent cells suggest that 
senescent cell clearance attenuates inflammation and creates a pro-regenerative environment (Jeon et al. 2017). 
In addition, several studies have shown that exposure to a young systemic environment markedly increased the 
regenerative capacity of old stem cells (Brack et al. 2007 and Conboy et al. 2005).”Senescent cells are thought 
to have a paracrine activity, in which they release IL-1b, TGFbeta, and specific chemokine ligands, promoting 
the degeneration of age-related tissue.(“Acosta et al. 2013 and Nelson et al. 2012”). 
Studies have shown that senescent cell clearance decreases levels of chronic inflammatory markers, IL-6 and 
IL-1b, in the elderly, indicating that the senescence-associated secretory phenotype is partly behind chronic 
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inflammation, often referred to as inflammatory inflammation (“Baker et al. 2016 and Jeon et al. 2017”). The 
secretory phenotype associated with senescence will recruit immune cells to kill senescent cells, called 
immunosenescence (Nikolich-Zugich 2018). Hematopoietic stem cell dysfunction can result in a decline in 
immune system function (Sahin et al. 2011). The increase of senescent cells throughout aging may be explained 
by senescent cells secreting inflammatory substances in an autocrine or paracrine way to facilitate senescence 
and a fall in their clearance.(Sharpless 2017).  
 

4. TELOMERE, MITOCHONDRIA DYSFUNCTION AND AGING 

Telomere shortening and mitochondrial dysfunction have long been recognized as critical initiators of natural 
ageing. ((Fang et al. 2016). P53 and DDR pathways are triggered when “DNA damage occurs due to telomere 
dysfunction, which in turn suppresses peroxisome proliferator-activated receptor gamma co-activator 1 
alpha/beta, contributing to mitochondrial dysfunction” (Dabrowska et al. 2015). In addition, research has shown 
that overexpression of (PGC-1 alpha) peroxisome proliferator-activated gamma co-activator 1 alpha receptor 
can reverse ageing muscle at the molecular level to younger muscle and play an important role in longevity 
(“Garcia et al. 2018”). “The NAD+-SIRT1-PGC-1 axis is another prominent pathway connecting telomere 
attrition to mitochondrial dysfunction. Short telomeres are sensed in this axis as doubled-strand breaks by 
nicotinamide adenine dinucleotide (NAD+)-dependent PARP1, which can trigger signalling for DNA repair, a 
process involving NAD+ consumption. PARP1 hyperactivation results in consumption of NAD+, thus 
restricting the activity of the NAD+-dependent deacetyase sirtuin 1 (SIRT1) (Fang 2014). SIRT1 has been 
shown to increase mitochondrial function and biogenesis through the PGC-1 alpha transcription factor, and loss 
of SIRT1 activity could contribute to mitochondrial dysfunction, particularly in muscle dysfunction (Fang 
2014). By increasing mitochondrial biogenesis, telomere shortening can also have an effect on the ageing 
process as activation of ATM due to DNA damage triggers AKT and the mechanistic target of rapamycin 
complex 1, resulting in mitochondrial biogenesis based on PGC-1beta and ROS generation (Correia-Melo et al. 
2016).”Thus, either an excess or a deficiency of mitochondrial synthesis can result in mitochondrial 
malfunction..(Kauppila et al. 2017). 
Mitochondrial dysfunction results from disruption of metabolic balance, which includes gluconeogenesis, fatty 
acid metabolism, and -oxidation. Cell dysfunction can be caused by metabolic imbalances, which can lead to 
cellular senescence via a variety of ways.. (“Sui et al. 2016 and Wiley and Campisi 2016”).Excessive reactive 
oxygen species formation as a result of telomere shortening has been proven to stabilize the DNA damage 
response and keep cells alive..(Correia-Melo et al. 2016). “In defective mitochondria, decreased ATP production 
increases the AMP-to-ATP ratio that promotes cellular senescence by stimulating AMPK, a key mediator of 
cellular metabolism” (Mihaylova and Shaw 2011). 
This research established that compromised mitochondria decreased “NAD+/NADH” ratios, resulting in 
senescence associated with mitochondrial dysfunction via activation of “AMPK, which induces p53-dependent 
senescence, and that mitochondrial dysfunction induces ageing phenotypes via distinct senescence-associated 
secretory phenotype components such as CCL27, IL-10, HMB1, and TNF alpha”, all of which affect 
survivability.(“Davalos et al. 2013; Frankel et al. 2013 and Wiley et al. 2016”). Additionally, the mitochondrial 
respiratory chain is required for the differentiation of foetal hematopoietic stem cells into progenitor cells and 
adult hematopoietic stem cell quiescence. Respiratory dysfunction caused by mitochondrial dysfunction would 
also impair hematopoietic stem cell differentiation, resulting in the loss of quiescence.(Anso et al. 2017). 
(“Prolla and Denu 2014; Son et al. 2016; Verdin 2015 and Zhang et al. 2016”). Studies have revealed serious 
episodes of telomere attrition causing  severe inflammation predominantly through mitochondrial oxidative 
stress hyperactivation of the inflammasome.NLRP3 (Kang et al. 2018). 
 

5. CONCLUSION 

Telomere shortening in cells appears to be a cause of human aging. Telomere shape variation, shelterin 
complexes, and tight telomeric chromatin all play a role in keeping chromosomes from degrading with age. 
“Telomere shortening” is being related to cellular and organismal aging. Finally, determining how cellular 
senescence and mitochondria cause aging is difficult... 
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