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Abstract:

Calcium and iron are vital trace elements that orchestrate critical eukaryotic cellular processes,
from signaling and enzyme activity to energy metabolism. Disruptions in their homeostasis
trigger cell dysfunction, oxidative damage, and eventual death. Parkinson's disease (PD), the
second most prevalent neurodegenerative disorder worldwide, lacks curative therapies or
interventions to halt its inexorable progression. Its pathological signatures—selective death of
dopaminergic neurons in the substantia nigra and Lewy body formation via a-synuclein
aggregation—closely intertwine with dysregulated calcium (Ca*") and iron homeostasis. This
review elucidates how aberrant Ca®" signaling exacerbates PD pathogenesis. Excessive
cytosolic Ca*" influx through voltage-gated channels (e.g., L-type VGCCs, NMDA receptors)
or release from intracellular stores (mitochondrial MCU, ER RyRs/IP3Rs) overloads
mitochondria, impairs ATP production, and activates catabolic pathways like calpains and
caspases. This fosters a-synuclein misfolding, synaptic dysfunction, and dopaminergic
neurotoxicity, amplified by elevated dopamine auto-oxidation in high-Ca** milieus.
Concomitantly, iron dysregulation drives ferroptosis, an iron-dependent lipid peroxidation
form of regulated cell death central to PD. Excess labile ferrous iron (Fe*") in the basal
ganglia—evident via MRI hypointensities—catalyzes Fenton reactions, generating hydroxyl
radicals that peroxidise polyunsaturated fatty acids in neuronal membranes. Glutathione
peroxidase 4 (GPX4) depletion, often via a-synuclein-mediated ferroportin suppression or xCT
inhibition, fails to neutralize these lipids, culminating in ferroptotic collapse. The Ca?*"-Fe**
nexus worsens this: calcium promotes iron release from ferritin, while both ions synergize in
mitochondrial permeability transition pores, accelerating ROS bursts. Deciphering these
intertwined imbalances is paramount for devising disease-modifying strategies, such as MCU
inhibitors (e.g., Ru360), iron chelators (deferiprone), or ferroptosis blockers (ferrostatin-1),
potentially synergizing to preserve dopaminergic integrity and mitigate PD progression.
Parkinson’s disease (PD) ranks as the second most common neurodegenerative disorder after
Alzheimer’s, affecting millions worldwide as populations age and lifespans extend. Its
progressive nature draws intense research focus due to the growing burden on healthcare
systems
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Introduction:

Parkinson's disease (PD), the second most common neurodegenerative disorder after
Alzheimer's, commands intense research scrutiny amid a global aging crisis that drives its
escalating prevalence.! As lifespans lengthen, PD's relentless progression—from motor deficits
to cognitive decline’>—strains healthcare systems worldwide.®> Aging emerges as the dominant
risk factor, heightening vulnerability in substantia nigra dopaminergic neurons, while genetic
variants (e.g., SNCA, LRRK?) and environmental insults like pesticides or trauma contribute
modestly.* These explain only a fraction of cases; most PD likely stems from their intricate
interplay, spotlighting downstream cascades like metal dyshomeostasis.” Though trace
elements, iron and calcium prove indispensable for oxygen handling, enzymatic catalysis, and
signaling.’ Their central nervous system overload sparks oxidative stress through reactive
oxygen species, mitochondrial collapse, and protein/receptor wreckage.” Metal imbalance fuels
neurodegeneration, disability, and neuroinflammation across disorders like PD and
Alzheimer's.® Compelling data pinpoint calcium overload and iron deposition as PD linchpins.
Basal ganglia iron buildup—evident on MRI—ignites Fenton chemistry, yielding hydroxyl
radicals’ that peroxidise lipids and trigger ferroptosis.'’ Concurrently, cytosolic Ca** surges via
L-type channels or MCU/IP3R!! stores overwhelm mitochondria, exacerbate a-synuclein
aggregation,'> and amplify dopaminergic toxicity via dopamine oxidation.!® This review
dissects the Ca?*-Fe** axis in PD pathogenesis, probing therapeutic horizons.!* Iron chelators
(deferiprone), MCU blockers (Ru360), and ferroptosis inhibitors (ferrostatin-1) show
preclinical promise, potentially synergizing with antioxidants to restore homeostasis, ' forestall
neuron loss, and pioneer disease-modifying interventions beyond symptomatic palliation. !¢

Calcium Dysregulation in Parkinson’s Disease

Calcium ions (Ca*") function as a universal second messenger across living organisms,
enabling cells to sense and respond to environmental shifts.'® In resting cells, cytoplasmic Ca**
remains tightly clamped at ~100 nmol/L, contrasting sharply with endoplasmic reticulum stores
(0.5-1 mmol/L) and extracellular levels (1-2 mmol/L)—a 20,000-fold gradient that powers
rapid signaling transients.!® This steep disparity lets cells harness Ca** pulses to toggle
physiological states via downstream cascades regulating contraction, secretion, and
transcription.?’ Neurons exploit this through plasma membrane fluxes: depolarization opens
voltage-gated calcium channels (VGCCs), while agonists like the dihydropyridine BAY K8644
amplify L-type VGCC influx.?! Since Ca*" sculpts every facet of neuronal biology—from
excitability to survival—homeostasis demands exquisite precision, encompassing cytosolic
levels, microdomain dynamics, buffering capacity, and entry kinetics.??

Substantia nigra dopaminergic (SN DA) neurons, prime targets in Parkinson’s disease (PD),
rely heavily on Ca** for excitability,” dopamine release, mitochondrial ATP synthesis,
enzymatic control, gene expression, and apoptosis thresholds.?*** Calcium mishandling
accelerates aging-related neurodegeneration, disrupting neurogenesis, synaptic plasticity, and
neurotransmission.”®?” PD patients display elevated brain Ca** versus controls, fuelling
excessive dopamine synthesis and autotoxicity that precipitates dopaminergic demise.?s>3
Alpha-synuclein aggregates, PD's pathological signature, further derail calcium clearance and
signaling.’!
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Regulation spans plasma membrane routes—VGCCs, NMDA/AMPA receptors’*’—and
intracellular depots: mitochondrial calcium uniporter (MCU), endoplasmic reticulum
RyRs/IP3Rs, plus store-operated systems like STIM/Orai and TRP channels.**** In PD, these
falter, unleashing cytosolic overloads that trigger mitochondrial collapse, ROS bursts, and
proteinopathy>>*—cascades ripe for therapeutic interception via channel modulators or
buffers.’

Calcium Signaling and Homeostasis in Parkinson's Disease Neurons

Calcium ions (Ca*") serve as the universal second messenger across all living organisms,
enabling cells to detect and respond to environmental changes with remarkable precision.*® In
resting cells, cytoplasmic Ca?* concentration remains clamped at approximately 100 nmol/L,
while endoplasmic reticulum (ER) stores maintain 0.5—1 mmol/L and extracellular fluid holds
1-2 mmol/L.*° This creates a staggering 20,000-fold gradient across the plasma membrane,
allowing cells to generate rapid, localized Ca®" transients that function as potent signaling
cues.*! These transients activate or inhibit Ca2*-dependent pathways, orchestrating diverse
physiological responses from contraction and secretion to gene transcription.*?

In neurons, Ca*" entry occurs primarily through plasma membrane channels triggered by
electrical depolarization or chemical agonists.** The dihydropyridine derivative BAY K8644
exemplifies this by enhancing influx through L-type voltage-gated calcium channels
(VGCCs).** Given Ca**'s pervasive influence on neuronal biology—spanning excitability,
synaptic transmission, survival,*® and death—maintaining precise homeostasis proves
essential.*® This involves tight regulation of cytosolic levels, microdomain formation, buffering
capacity, and spatiotemporal entry patterns.*’

Substantia nigra dopaminergic (SN DA) neurons, selectively vulnerable in Parkinson's disease
(PD), depend critically on Ca*" for multiple functions: membrane excitability, dopamine
release, mitochondrial ATP production, enzymatic regulation, gene expression, and apoptosis
execution.*®* Calcium dysregulation accelerates aging-related neurodegeneration by
disrupting neurogenesis,”® synaptic plasticity, and neurotransmission.’! PD patients
consistently show elevated brain Ca** levels compared to healthy controls, linking this overload
to excessive dopamine biosynthesis and subsequent dopaminergic neurotoxicity.>3->*

Alpha-synuclein aggregation, a pathological hallmark of PD, further compromises calcium
homeostasis by impairing clearance mechanisms.>>*® Multiple pathways govern Ca?* fluxes in
SN DA neurons.”’ Plasma membrane entry occurs via VGCCs and glutamate receptors
(NMDA-R, AMPA-R). Intracellularly, ER releases Ca*" through ryanodine receptors (RyR)
and IPs receptors,’®%%° while mitochondria contribute via the mitochondrial calcium uniporter
(MCU).®! Store-operated calcium entry (SOCE) systems—STIM/Orai complexes and transient
receptor potential (TRP) channels—replenish cytosolic stores after depletion.®

In PD, these regulatory systems fail, unleashing pathological Ca*" surges that trigger
mitochondrial dysfunction,®® oxidative stress cascades, and protein misfolding®*—driving
inexorable dopaminergic degeneration characteristic of the disease.®>%
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Fig 1: Neuronal Ca** Chaos: Entry Routes, ER-Mito Crosstalk and Overload Triggering
Apoptosis"

Voltage-gated calcium channels (VGCCs) comprise ten distinct subtypes,®’ classified by their
unique pharmacological profiles and pore-forming ol subunits, with function fine-tuned
through alternative splicing and accessory subunits (B1-p4, 0281-0264).% These channels
cluster into three families based on sequence homology and properties: Cavl (L-type), Cav2
(P/Q-, N-, R-type), and Cav3 (T-type).®>’° The Cavl family includes four L-type channels
(Cavl.1-Cavl.4), highly sensitive to dihydropyridine (DHP) blockers at nanomolar
concentrations.”! In Parkinson’s disease (PD), Cavl.2 and Cavl.3 emerge as key players,
particularly in substantia nigra pars compacta (SNc) dopaminergic neurons.””

Juvenile SN¢ neurons predominantly express Cav1.2, but aging shifts reliance to Cav1.3, which
supports oscillatory Ca?* influx critical for autonomous pacing—the intrinsic,”>’* slow
depolarization sustaining basal dopamine release to the striatum.’”> Unlike Cavl.2, Cavl.3
channels resist full closure during pacing cycles, maintaining elevated cytosolic Ca*" essential
for physiologic dopamine secretion.””-’® However, chronic Ca>* excess synergizes with aging,
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mitochondrial toxins, or genetic mutations, precipitating metabolic stress and organelle
damage.” Notably, upregulated Cavl.3 expressions in early PD cerebral cortex precedes
pathology, positioning calcium dysregulation as an initiator rather than mere consequence.
DHP antihypertensives offer neuroprotection; epidemiological data show 20-30% reduced PD
risk with chronic use.®

Cav2 family channels (Cav2.1-2.3) localize presynaptically, driving rapid neurotransmitter
release via P/Q-, N-, and R-type currents.®! T-type Cav3 channels (Cav3.1-3.3) activate at
hyperpolarized potentials, shaping neuronal firing patterns through subthreshold
oscillations. 583

Dopaminergic neuron activity hinges on Ca?* carriers and homeostasis, with ~80% of cellular
Ca?* sequestered in organelles.’*%>% While endoplasmic reticulum (ER) dominates as the
primary reservoir, mitochondria, lysosomes, and Golgi also contribute significantly.”#® ER-
mediated signaling proves pivotal, particularly store-operated Ca?* entry (SOCE).%’ ER Ca*
depletion activates STIM1 on the ER membrane, which couples to plasma membrane Orail
channels, driving extracellular Ca?* influx that SERCA pumps refill into ER.°*! STIM1
governs classical SOCE, while lower-affinity STIM2 fine-tunes subtle fluctuations.
Orail/STIM1 mutations disrupt SOCE, linking to diverse pathologies.”>"*

In PD, STIMI-TRPCI1 complexes inhibit Cavl.3, deranging homeostasis, while reduced
STIM1 occurs in Alzheimer’s disease (AD).”* Hippocampal STIM2 supports dendritogenesis
via Ca?*/calmodulin-dependent kinase pathways.”> Synaptotagmin-7 (Syt7), a presynaptic Ca2*
sensor, amplifies spontaneous release through STIM2-mediated SOCE.**’ Chronic
hyperactivity risks synaptic exhaustion and apoptosis, implicating presynaptic SOCE in
neurodegeneration across PD, AD, and beyond.**-!%

Mitochondrial Ca** handling centers on ER-mitochondria associated membranes (MAMs),
where ~20% of mitochondria tether ~10-25 nm from ER.!°! IP3R on ER releases Ca* into
cytosol, funnelled through VDACI on mitochondrial outer membrane into the matrix via
MCU.!%219 pathologic VDACI upregulation triggers oligomerization, MCU hyperactivation,
and MAM coupling to IP3R, culminating in Ca®* overload.'® This opens mitochondrial
permeability transition pore (mPTP) or promotes Bax/Bak pore formation, releasing
cytochrome c to trigger caspase-9/3-mediated apoptosis.'?>10

Paradoxically, a-synuclein at MAMs disrupts VAPB-PTPIP51 tethers—whether wild-type or
mutant—impairing ER-mito Ca** transfer and ATP synthesis via tricarboxylic acid cycle
dysregulation.!”-1% Both Ca* excess (mPTP opening) and deficiency (energy failure) threaten
neuronal survival.'®

Ca?* signalling’s ubiquity positions dyshomeostasis as a convergent aging mechanism across
neurodegeneration.''® Plasma membrane influx, intracellular buffering, and inter-organelle
trafficking orchestrate metabolism, signaling, and survival.!'! Targeting VGCCs (DHPs),
SOCE (STIM/Orai modulators), or MAM integrity holds transformative therapeutic promise
for PD.!2

Role of Iron in Parkinson’s disease
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Iron serves as an essential trace element fuelling cellular metabolism, with outsized importance
in the central nervous system where it supports synapse formation, myelination, and
neurotransmitter synthesis and release.!!>!!* These roles extend to childhood brain
development, influencing IQ, cognition, motor skills, and social behavior.!!>!'® However, brain
ferritin levels rise with age, driving iron overload that contributes to neurodegeneration in older
adults.!17:120

Excess iron sparks oxidative stress, inflammation, and cell death, with elevated levels
consistently detected in Parkinson's disease (PD)!'> and Alzheimer's disease (AD) brains,'?
particularly in basal ganglia and substantia nigra. As a redox-active metal, iron powers ATP
production in neurons, but overload renders neural tissue vulnerable to oxidative damage and
proteolysis.!?! Beyond aging, hereditary hemochromatosis (HH)—an autosomal recessive
disorder from HFE gene mutations (C282Y, H63D) disrupting hepcidin regulation—
accelerates brain iron deposition.'?>!%* Though the blood-brain barrier normally shields the
CNS during systemic imbalance, overload compromises this defence, potentially elevating PD
risk in HH patients through dysregulated storage and export.'?* Iron dysregulation culminates
in ferroptosis, a caspase-independent regulated cell death (RCD) form distinct from apoptosis,
necrosis, or autophagy.'?%"126 First described by Brent Stockwell, ferroptosis features shrunken
mitochondria with reduced cristae density, outer membrane rupture, and no plasma membrane
lysis or bioenergetic catastrophe. In neurodegeneration, it unleashes inflammation,
neurotransmitter oxidation, synaptic failure, myelin breakdown, astrocyte dysfunction, and
neuronal demise.'?

Ferroptosis triggers via glutamate/iron/polyunsaturated fatty acid (PUFA) buildup or
glutathione (GSH)/NAD(P)H/glutathione peroxidase 4 (GPX4) depletion. Iron uptake begins
with transferrin receptor 1 (TFR1) binding, endosomal endocytosis, ferric (Fe**) reduction by
STEAP3, and ferrous (Fe*") export via DMT1 into the labile iron pool (LIP) or ferritin
storage.!”” Excess LIP Fe** catalyzes Fenton reactions, generating hydroxyl radicals that
initiate PUFA peroxidation in plasma membranes.!”® Lipid hydroperoxides (PL-OOH)
decompose into toxic aldehydes, epoxides, and oxo products, forming nanomembrane pores
that rupture cells.'*® This peroxidation propagates cell-to-cell in waves, perpetuating iron-lipid
vicious cycles.!3! Three anti-ferroptotic pathways counter this: the canonical GSH/GPX4 axis
neutralizing peroxides; the FSP1/coenzyme Q10/NAD(P)H system; and the GCH1/bh4/DHFR
route.'? In PD, basal ganglia iron excess—visible as MRI hypointensities—amplifies
dopaminergic ferroptosis, positioning iron chelators like deferiprone and ferroptosis inhibitors
(ferrostatin-1) as promising disease-modifying strategies.'?
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Figure 2. Anti-Ferroptotic Pathways: TFRI1-STEAP3 iron uptake — Fenton-driven PUFA
peroxidation countered by GSH/GPX4, FSP1/CoQ10, and GCHI1/BH4/DHFR radical

scavenging.
Ferroptosis Defence Pathways: GPX4, FSP1/C0oQ10, and GCH1/BH4 Systems

Glutathione peroxidase 4 (GPX4) stands as the cornerstone selenoenzyme suppressing
ferroptosis, the iron-dependent lipid peroxidation cell death. Physiologically, GPX4 harnesses
glutathione (GSH) to reduce cytotoxic lipid hydroperoxides (PL-OOH) to harmless alcohols
(PL-OH), directly countering the Fenton reaction-driven membrane damage in Parkinson's
disease (PD). GSH depletion or GPX4 inactivation unleashes ferroptotic cascades in
dopaminergic neurons. 34133136

GSH biosynthesis hinges on the cystine/glutamate antiporter system xc-, which imports cystine
for reduction to cysteine by GSH itself or thioredoxin reductase 1 (TRR1).!3” ATP-dependent
glutamate-cysteine ligase (GCL) then forms y-glutamylcysteine, followed by glutathione
synthetase (GS) addition of glycine to yield GSH.!*® Transcription factors orchestrate this: Nrf2
(nuclear factor erythroid 2-related factor 2) upregulates GCL, GS, GCLC (GCL catalytic
subunit), GSTs (glutathione S-transferases), HO-1 (heme oxygenase-1), and NQO1 (NAD(P)H
quinone dehydrogenase 1), mounting a broad antioxidant defence.!'3* Nrf2 modulation emerges
as a promising neuroprotective strategy for PD, potentially amplifying GSH/GPX4 resilience
against iron overload.'*

Parallel to this canonical axis operates the FSP1-CoQl10-NAD(P)H pathway, a GSH-
independent ferroptosis suppressor.!*’ Ferroptosis suppressor protein 1 (FSP1) features N-
myristoylation for membrane targeting and a flavoprotein oxidoreductase domain. FSPI
reduces coenzyme Q10 (CoQ10)—the lipophilic mitochondrial electron carrier—to ubiquinol
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(CoQ10-H2) using NAD(P)H.'"*! Both oxidized and reduced CoQ10 scavenge lipid peroxides
at plasma membranes, safeguarding PUFA-rich phospholipids.'*> NQO1 synergizes with
FSP1, further reducing ubiquinone to ubiquinol, with Nrf2 governing NQO1 expression.'*
This system's potency rivals GPX4/GSH, positioning FSP1/CoQ10 activators as viable PD
therapeutics.!

The GCH1/BH4/DHFR pathway, though underexplored in neurodegeneration, offers a third
defence line. Tetrahydrobiopterin (BH4)—essential for dopamine biosynthesis—traps lipid
peroxidation radicals while boosting CoQ10 synthesis via phenylalanine hydroxylase.'*> GTP
cyclohydrolase 1 (GCHI1) rate-limits de novo BH4 production; dihydrofolate reductase
(DHFR) recycles oxidized BH4.'%¢ DHFR inhibition synergizes with GPX4 blockers to induce
ferroptosis therapeutically,'*” but BH4 supplementation may conversely protect neurons.
GCH1/BH4's role in PD ferroptosis warrants deeper investigation given BH4's dopamine
linkage.'*

Therapeutic Horizons

Ferroptosis inhibition offers disease-modifying potential for PD, targeting iron dysregulation
at multiple nodes. Iron chelators like deferiprone'*’ reduce labile Fe** pools, blunting Fenton
chemistry.!>® Nrf2 agonists (e.g., dimethyl fumarate) amplify GSH/GPX4 and NQO1 defenses.
GPX4 stabilizers or GSH precursors (N-acetylcysteine) restore canonical protection.!>! CoQ10
supplementation—already trialled in PD—leverages FSP1 pathway radical trapping.'>?
Emerging GCH1/BH4 modulators could enhance dopamine synthesis alongside anti-
peroxidant effects.'>?

Recent (2021-2026) PD trials highlight ferrostatin-1 analogs, liproxstatin-1, and a-lipoic acid
as ferroptosis inhibitors attenuating nigral lipid peroxidation in MPTP/6-OHDA models.'>*
TFR1 antagonists curb iron import; xCT activators replenish GSH.'>> Combined chelation-
antioxidant regimens show synergistic dopaminergic preservation.!*These strategies shift PD
therapy from L-DOPA palliation toward upstream homeostasis restoration, potentially halting
progression in iron-vulnerable basal ganglia circuits.!>"158

Medicine Mechanism and Function

Iron Chelators

Iron chelator; inhibits pathological a-synuclein
Deferiprone toxicity in sporadic PD mouse models

Desterrioxamine Iron chelator; directly binds excess iron

Nrf2 Pathway Activators
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Medicine Mechanism and Function
Antioxidant/iron chelator; activates SIRTI1/Nrf2
signaling to regulate iron metabolism and suppress

Alpha lipoic acid ferroptosis

Antioxidant; upregulates Nrf2, GPX4, ferroportin-1

Gastrodin (FPN1), and HO-1 protein expression
Antioxidant/iron chelator; activates Nrf2
Hinokitiol cytoprotective transcription

Icariside 11

Antioxidant; activates Keapl/Nrf2/GPX4 signaling
pathway

Antioxidant; activates Nrf2/ARE signaling to protect

Morroniside PD dopaminergic neurons from ferroptosis
Paeoniflorin Antioxidant; activates Akt/Nrf2/GPx4 pathway
Quercetin Antioxidant; inhibits ferroptosis via Nrf2 activation

GPX4/GSH Axis Modulators

Activates GPX4/GSH/NRF2 axis; inhibits oxidative
markers (iron, TfR1, PTGS2, 4-HNE); suppresses p-

Lapatinib EGFR/c-SRC/PKCBII/PLC-y/ACSL-4 pathway
Inhibits NAD(P)H dehydrogenase downregulation,
reduces lipid peroxidation, increases GPX4

Idebenone expression

Ferritinophagy & Iron Regulators

Buddlejasaponin IVb

Suppresses IRP2-mediated iron overload
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Medicine

Mechanism and Function

Regulates ferritin expression, promotes Nrf2 nuclear

MG1363-pMG36e-GLP-1

translocation, inhibits NCOA4-mediated
DI-3-n-butylphthalide ferritinophagy
Antioxidants & Multi-target
Doxycycline & | Prevent intracellular  oxidative  stress and
Demeclocycline mitochondrial membrane depolarization
Probiotic Strain L. lactis || Activates Keapl/Nrf2/GPX4 pathway; downregulates

ACSLA4, upregulates FSP1 to suppress ferroptosis

Novel Pathway Modulators

Targets HSP90/CDC37 and multiple regulated cell
Pazopanib death (RCD) mechanisms

Autophagy inducer; inhibits ferroptosis via autophagy
Rapamycin activation

Alleviates oxidative stress/ferroptosis via
B-hydroxybutyrate ZFP36/ACSL4 axis modulation

Table 1: Depicting the different forms of Iron chelating agents and modulators
Iron and Calcium Interplay

Iron generates reactive oxygen species (ROS) that serve vital signaling roles in neurons,
sculpting synaptic plasticity through structural and functional remodelling. ROS fine-tunes key
effectors like NMDA receptors, voltage-gated Ca*" channels (VGCCs), K* channels, and
CaMKII'*—central to activity-dependent plasticity. Notably, ROS triggers redox
modifications of ryanodine receptors (RyR) in hippocampal neurons, unleashing ER Ca**
release that phosphorylates plasticity-linked enzymes.!'®® Iron-driven ROS similarly activates
RyR-mediated Ca?* signaling, boosting ERK1/2 phosphorylation even in Ca**-free conditions,
underscoring physiologic synergy.!®! Yet excess ROS proves neurotoxic. Heightened iron
sparks RyR-dependent Ca?" liberation, promoting pathological mitochondrial fission and
dysfunction.'®? Iron-catalyzed lipid peroxidation further devastates mitochondria, elevating
matrix Ca?" that hyperactivates calcineurin—a Ca?*"-dependent phosphatase—culminating in
neuronal demise, 63164
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This iron-Ca?* interplay runs bidirectional. Ca?" governs numerous antioxidant defenses and
ROS-generating enzymes.'® Lipid peroxidation by-products like 4-hydroxynonenal (4-HNE)
directly gate plasma membrane Ca2* channels, including hippocampal VGCCs.!9>1%¢ Elevated
4-HNE disrupts Na*/Ca*" pumps and alters channel permeability, provoking energy failure and
cell death.'$”®8  Conversely, Ca?* dysregulation amplifies ROS cascades.'® Cytosolic Ca2*
overload or mitochondrial influx unleashes ROS bursts, destabilizing the labile iron pool.'”
Excess cytoplasmic Ca*" stimulates neuronal nitric oxide synthase (nNOS) and NAD(P)H
oxidase!’""!>—both ROS sources and plasticity modulators—forming vicious feed-forward
loops.!”® This intimate crosstalk renders neurons exquisitely vulnerable: iron dysregulation
provokes Ca*" storms, while Ca* mishandling exacerbates iron toxicity.!”>!”* In Parkinson's
disease, substantia nigra iron deposits ignite Fenton chemistry, generating hydroxyl radicals
that sensitize RyR/IP3R channels!” and overwhelm mitochondrial Ca?* uniporters (MCU).!7
Resultant matrix Ca?" spikes open permeability transition pores (mPTP), while cytosolic surges
activate calpains and calcineurin, shredding dopaminergic circuits.!””178

Therapeutically, dual-targeting holds promise. Iron chelators like deferiprone blunt ROS
ignition,!” while MCU inhibitors (Ru360) or RyR stabilizers (dantrolene) curb Ca?*
amplification. %181 Nrf2 agonists simultaneously bolster GSH/GPX4 defenses against
peroxidation while rebalancing ion homeostasis.!3!*? This convergence positions the Fe?*-Ca?*
axis as a high-yield therapeutic nexus for neurodegeneration, where untangling one strand
inevitably stabilizes the other.!

Conclusion:

Parkinson's disease (PD) remains a prevalent neurodegenerative disorder with elusive etiology,
where metal ion dyshomeostasis—particularly calcium (Ca?") and iron—emerges as a pivotal
driver of pathogenesis. This review underscores Ca®" as an indispensable second messenger,
orchestrating neuronal excitability, synaptic plasticity, and survival through plasma membrane
channels (VGCCs, NMDA-R) and intracellular stores (ER IP3R/RyR, mitochondrial MCU).
Disruptions in Ca** homeostasis precipitate dopaminergic demise in the substantia nigra, yet
calcium channel blockers (e.g., dihydropyridines) reveal neuroprotective potential,
illuminating microscopic Ca** signaling as a therapeutic linchpin. Concurrently, nigral iron
overload—evident via MRI hypointensities—fuels ferroptosis, an iron-dependent lipid
peroxidation cascade distinct from apoptosis. While the canonical GPX4/GSH axis dominates
research, with Nrf2 agonists amplifying antioxidant defenses (HO-1, NQO1, GCLC), parallel
pathways warrant exploration. The FSP1/CoQ10/NAD(P)H system deploys ubiquinol radical
trapping at membranes, though CoQ10 biosynthesis and membrane targeting pose key
challenges. Similarly, the GCH1/BH4/DHFR pathway—critical for dopamine synthesis—
offers untapped anti-peroxidant potential via BH4 radical scavenging, meriting PD-specific
validation.

Critically, Ca*-iron crosstalk amplifies vulnerability: iron-catalyzed ROS sensitizes RyR
channels and VGCCs, unleashing cytosolic/mitochondrial Ca?" storms, while Ca** overload
destabilizes labile iron pools via nNOS/NADPH oxidase activation. This bidirectional synergy
culminates in mPTP opening, calcineurin hyperactivation, and ferroptotic collapse.

Future prospect:
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Future therapies must transcend unidimensional targeting. Multifunctional agents—combining
iron chelators (deferiprone), MCU inhibitors (Ru360), Nrf2 inducers, and CoQ10/FSP1
stabilizers—hold transformative promise. Precision nanotherapeutics or bifunctional small
molecules addressing the Ca**-Fe?" nexus could pioneer disease-modifying interventions,
shifting PD management from symptomatic palliation to homeostasis restoration.
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