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Abstract:   

Calcium and iron are vital trace elements that orchestrate critical eukaryotic cellular processes, 

from signaling and enzyme activity to energy metabolism. Disruptions in their homeostasis 

trigger cell dysfunction, oxidative damage, and eventual death. Parkinson's disease (PD), the 

second most prevalent neurodegenerative disorder worldwide, lacks curative therapies or 

interventions to halt its inexorable progression. Its pathological signatures—selective death of 

dopaminergic neurons in the substantia nigra and Lewy body formation via α-synuclein 

aggregation—closely intertwine with dysregulated calcium (Ca²⁺) and iron homeostasis. This 

review elucidates how aberrant Ca²⁺ signaling exacerbates PD pathogenesis. Excessive 

cytosolic Ca²⁺ influx through voltage-gated channels (e.g., L-type VGCCs, NMDA receptors) 

or release from intracellular stores (mitochondrial MCU, ER RyRs/IP3Rs) overloads 

mitochondria, impairs ATP production, and activates catabolic pathways like calpains and 

caspases. This fosters α-synuclein misfolding, synaptic dysfunction, and dopaminergic 

neurotoxicity, amplified by elevated dopamine auto-oxidation in high-Ca²⁺ milieus. 

Concomitantly, iron dysregulation drives ferroptosis, an iron-dependent lipid peroxidation 

form of regulated cell death central to PD. Excess labile ferrous iron (Fe²⁺) in the basal 

ganglia—evident via MRI hypointensities—catalyzes Fenton reactions, generating hydroxyl 

radicals that peroxidise polyunsaturated fatty acids in neuronal membranes. Glutathione 

peroxidase 4 (GPX4) depletion, often via α-synuclein-mediated ferroportin suppression or xCT 

inhibition, fails to neutralize these lipids, culminating in ferroptotic collapse. The Ca²⁺-Fe²⁺ 

nexus worsens this: calcium promotes iron release from ferritin, while both ions synergize in 

mitochondrial permeability transition pores, accelerating ROS bursts. Deciphering these 

intertwined imbalances is paramount for devising disease-modifying strategies, such as MCU 

inhibitors (e.g., Ru360), iron chelators (deferiprone), or ferroptosis blockers (ferrostatin-1), 

potentially synergizing to preserve dopaminergic integrity and mitigate PD progression. 

Parkinson’s disease (PD) ranks as the second most common neurodegenerative disorder after 

Alzheimer’s, affecting millions worldwide as populations age and lifespans extend. Its 

progressive nature draws intense research focus due to the growing burden on healthcare 

systems 
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Introduction:  

Parkinson's disease (PD), the second most common neurodegenerative disorder after 

Alzheimer's, commands intense research scrutiny amid a global aging crisis that drives its 

escalating prevalence.1 As lifespans lengthen, PD's relentless progression—from motor deficits 

to cognitive decline2—strains healthcare systems worldwide.3 Aging emerges as the dominant 

risk factor, heightening vulnerability in substantia nigra dopaminergic neurons, while genetic 

variants (e.g., SNCA, LRRK2) and environmental insults like pesticides or trauma contribute 

modestly.4 These explain only a fraction of cases; most PD likely stems from their intricate 

interplay, spotlighting downstream cascades like metal dyshomeostasis.5 Though trace 

elements, iron and calcium prove indispensable for oxygen handling, enzymatic catalysis, and 

signaling.6 Their central nervous system overload sparks oxidative stress through reactive 

oxygen species, mitochondrial collapse, and protein/receptor wreckage.7 Metal imbalance fuels 

neurodegeneration, disability, and neuroinflammation across disorders like PD and 

Alzheimer's.8 Compelling data pinpoint calcium overload and iron deposition as PD linchpins. 

Basal ganglia iron buildup—evident on MRI—ignites Fenton chemistry, yielding hydroxyl 

radicals9 that peroxidise lipids and trigger ferroptosis.10 Concurrently, cytosolic Ca²⁺ surges via 

L-type channels or MCU/IP3R11 stores overwhelm mitochondria, exacerbate α-synuclein 

aggregation,12 and amplify dopaminergic toxicity via dopamine oxidation.13 This review 

dissects the Ca²⁺-Fe²⁺ axis in PD pathogenesis, probing therapeutic horizons.14 Iron chelators 

(deferiprone), MCU blockers (Ru360), and ferroptosis inhibitors (ferrostatin-1) show 

preclinical promise, potentially synergizing with antioxidants to restore homeostasis,15 forestall 

neuron loss, and pioneer disease-modifying interventions beyond symptomatic palliation.16,17 

Calcium Dysregulation in Parkinson’s Disease 

Calcium ions (Ca²⁺) function as a universal second messenger across living organisms, 

enabling cells to sense and respond to environmental shifts.18 In resting cells, cytoplasmic Ca²⁺ 

remains tightly clamped at ~100 nmol/L, contrasting sharply with endoplasmic reticulum stores 

(0.5–1 mmol/L) and extracellular levels (1–2 mmol/L)—a 20,000-fold gradient that powers 

rapid signaling transients.19 This steep disparity lets cells harness Ca²⁺ pulses to toggle 

physiological states via downstream cascades regulating contraction, secretion, and 

transcription.20  Neurons exploit this through plasma membrane fluxes: depolarization opens 

voltage-gated calcium channels (VGCCs), while agonists like the dihydropyridine BAY K8644 

amplify L-type VGCC influx.21 Since Ca²⁺ sculpts every facet of neuronal biology—from 

excitability to survival—homeostasis demands exquisite precision, encompassing cytosolic 

levels, microdomain dynamics, buffering capacity, and entry kinetics.22 

Substantia nigra dopaminergic (SN DA) neurons, prime targets in Parkinson’s disease (PD), 

rely heavily on Ca²⁺ for excitability,23 dopamine release, mitochondrial ATP synthesis, 

enzymatic control, gene expression, and apoptosis thresholds.24,25 Calcium mishandling 

accelerates aging-related neurodegeneration, disrupting neurogenesis, synaptic plasticity, and 

neurotransmission.26,27 PD patients display elevated brain Ca²⁺ versus controls, fuelling 

excessive dopamine synthesis and autotoxicity that precipitates dopaminergic demise.28,29,30 

Alpha-synuclein aggregates, PD's pathological signature, further derail calcium clearance and 

signaling.31 
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Regulation spans plasma membrane routes—VGCCs, NMDA/AMPA receptors32—and 

intracellular depots: mitochondrial calcium uniporter (MCU), endoplasmic reticulum 

RyRs/IP3Rs, plus store-operated systems like STIM/Orai and TRP channels.33,34 In PD, these 

falter, unleashing cytosolic overloads that trigger mitochondrial collapse, ROS bursts, and 

proteinopathy35,36—cascades ripe for therapeutic interception via channel modulators or 

buffers.37 

Calcium Signaling and Homeostasis in Parkinson's Disease Neurons 

Calcium ions (Ca²⁺) serve as the universal second messenger across all living organisms, 

enabling cells to detect and respond to environmental changes with remarkable precision.38 In 

resting cells, cytoplasmic Ca²⁺ concentration remains clamped at approximately 100 nmol/L, 

while endoplasmic reticulum (ER) stores maintain 0.5–1 mmol/L and extracellular fluid holds 

1–2 mmol/L.39,40 This creates a staggering 20,000-fold gradient across the plasma membrane, 

allowing cells to generate rapid, localized Ca²⁺ transients that function as potent signaling 

cues.41 These transients activate or inhibit Ca²⁺-dependent pathways, orchestrating diverse 

physiological responses from contraction and secretion to gene transcription.42 

In neurons, Ca²⁺ entry occurs primarily through plasma membrane channels triggered by 

electrical depolarization or chemical agonists.43 The dihydropyridine derivative BAY K8644 

exemplifies this by enhancing influx through L-type voltage-gated calcium channels 

(VGCCs).44 Given Ca²⁺'s pervasive influence on neuronal biology—spanning excitability, 

synaptic transmission, survival,45 and death—maintaining precise homeostasis proves 

essential.46 This involves tight regulation of cytosolic levels, microdomain formation, buffering 

capacity, and spatiotemporal entry patterns.47 

Substantia nigra dopaminergic (SN DA) neurons, selectively vulnerable in Parkinson's disease 

(PD), depend critically on Ca²⁺ for multiple functions: membrane excitability, dopamine 

release, mitochondrial ATP production, enzymatic regulation, gene expression, and apoptosis 

execution.48,49 Calcium dysregulation accelerates aging-related neurodegeneration by 

disrupting neurogenesis,50 synaptic plasticity, and neurotransmission.51 PD patients 

consistently show elevated brain Ca²⁺ levels compared to healthy controls, linking this overload 

to excessive dopamine biosynthesis and subsequent dopaminergic neurotoxicity.52,53,54 

Alpha-synuclein aggregation, a pathological hallmark of PD, further compromises calcium 

homeostasis by impairing clearance mechanisms.55,56 Multiple pathways govern Ca²⁺ fluxes in 

SN DA neurons.57 Plasma membrane entry occurs via VGCCs and glutamate receptors 

(NMDA-R, AMPA-R). Intracellularly, ER releases Ca²⁺ through ryanodine receptors (RyR) 

and IP₃ receptors,58,59,60 while mitochondria contribute via the mitochondrial calcium uniporter 

(MCU).61 Store-operated calcium entry (SOCE) systems—STIM/Orai complexes and transient 

receptor potential (TRP) channels—replenish cytosolic stores after depletion.62 

In PD, these regulatory systems fail, unleashing pathological Ca²⁺ surges that trigger 

mitochondrial dysfunction,63 oxidative stress cascades, and protein misfolding64—driving 

inexorable dopaminergic degeneration characteristic of the disease.65,66 
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 Fig 1: Neuronal Ca²⁺ Chaos: Entry Routes, ER-Mito Crosstalk and Overload Triggering 

Apoptosis" 

Voltage-gated calcium channels (VGCCs) comprise ten distinct subtypes,67 classified by their 

unique pharmacological profiles and pore-forming α1 subunits, with function fine-tuned 

through alternative splicing and accessory subunits (β1–β4, α2δ1–α2δ4).68 These channels 

cluster into three families based on sequence homology and properties: Cav1 (L-type), Cav2 

(P/Q-, N-, R-type), and Cav3 (T-type).69,70 The Cav1 family includes four L-type channels 

(Cav1.1–Cav1.4), highly sensitive to dihydropyridine (DHP) blockers at nanomolar 

concentrations.71 In Parkinson’s disease (PD), Cav1.2 and Cav1.3 emerge as key players, 

particularly in substantia nigra pars compacta (SNc) dopaminergic neurons.72, 

Juvenile SNc neurons predominantly express Cav1.2, but aging shifts reliance to Cav1.3, which 

supports oscillatory Ca²⁺ influx critical for autonomous pacing—the intrinsic,73,74 slow 

depolarization sustaining basal dopamine release to the striatum.75 Unlike Cav1.2, Cav1.3 

channels resist full closure during pacing cycles, maintaining elevated cytosolic Ca²⁺ essential 

for physiologic dopamine secretion.77,78 However, chronic Ca²⁺ excess synergizes with aging, 
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mitochondrial toxins, or genetic mutations, precipitating metabolic stress and organelle 

damage.79 Notably, upregulated Cav1.3 expressions in early PD cerebral cortex precedes 

pathology, positioning calcium dysregulation as an initiator rather than mere consequence. 

DHP antihypertensives offer neuroprotection; epidemiological data show 20–30% reduced PD 

risk with chronic use.80 

Cav2 family channels (Cav2.1–2.3) localize presynaptically, driving rapid neurotransmitter 

release via P/Q-, N-, and R-type currents.81 T-type Cav3 channels (Cav3.1–3.3) activate at 

hyperpolarized potentials, shaping neuronal firing patterns through subthreshold 

oscillations.82,83 

Dopaminergic neuron activity hinges on Ca²⁺ carriers and homeostasis, with ~80% of cellular 

Ca²⁺ sequestered in organelles.84,85,86 While endoplasmic reticulum (ER) dominates as the 

primary reservoir, mitochondria, lysosomes, and Golgi also contribute significantly.87,88 ER-

mediated signaling proves pivotal, particularly store-operated Ca²⁺ entry (SOCE).89 ER Ca²⁺ 

depletion activates STIM1 on the ER membrane, which couples to plasma membrane Orai1 

channels, driving extracellular Ca²⁺ influx that SERCA pumps refill into ER.90,91 STIM1 

governs classical SOCE, while lower-affinity STIM2 fine-tunes subtle fluctuations. 

Orai1/STIM1 mutations disrupt SOCE, linking to diverse pathologies.92,93 

In PD, STIM1-TRPC1 complexes inhibit Cav1.3, deranging homeostasis, while reduced 

STIM1 occurs in Alzheimer’s disease (AD).94 Hippocampal STIM2 supports dendritogenesis 

via Ca²⁺/calmodulin-dependent kinase pathways.95 Synaptotagmin-7 (Syt7), a presynaptic Ca²⁺ 

sensor, amplifies spontaneous release through STIM2-mediated SOCE.96,97 Chronic 

hyperactivity risks synaptic exhaustion and apoptosis, implicating presynaptic SOCE in 

neurodegeneration across PD, AD, and beyond.99,100 

Mitochondrial Ca²⁺ handling centers on ER-mitochondria associated membranes (MAMs), 

where ~20% of mitochondria tether ~10–25 nm from ER.101 IP3R on ER releases Ca²⁺ into 

cytosol, funnelled through VDAC1 on mitochondrial outer membrane into the matrix via 

MCU.102,103 Pathologic VDAC1 upregulation triggers oligomerization, MCU hyperactivation, 

and MAM coupling to IP3R, culminating in Ca²⁺ overload.104 This opens mitochondrial 

permeability transition pore (mPTP) or promotes Bax/Bak pore formation, releasing 

cytochrome c to trigger caspase-9/3-mediated apoptosis.105,106 

Paradoxically, α-synuclein at MAMs disrupts VAPB-PTPIP51 tethers—whether wild-type or 

mutant—impairing ER-mito Ca²⁺ transfer and ATP synthesis via tricarboxylic acid cycle 

dysregulation.107,108 Both Ca²⁺ excess (mPTP opening) and deficiency (energy failure) threaten 

neuronal survival.109 

Ca²⁺ signalling’s ubiquity positions dyshomeostasis as a convergent aging mechanism across 

neurodegeneration.110 Plasma membrane influx, intracellular buffering, and inter-organelle 

trafficking orchestrate metabolism, signaling, and survival.111 Targeting VGCCs (DHPs), 

SOCE (STIM/Orai modulators), or MAM integrity holds transformative therapeutic promise 

for PD.112 

Role of Iron in Parkinson’s disease  
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Iron serves as an essential trace element fuelling cellular metabolism, with outsized importance 

in the central nervous system where it supports synapse formation, myelination, and 

neurotransmitter synthesis and release.113,114 These roles extend to childhood brain 

development, influencing IQ, cognition, motor skills, and social behavior.115,116 However, brain 

ferritin levels rise with age, driving iron overload that contributes to neurodegeneration in older 

adults.117,120 

Excess iron sparks oxidative stress, inflammation, and cell death, with elevated levels 

consistently detected in Parkinson's disease (PD)119, and Alzheimer's disease (AD) brains,120 

particularly in basal ganglia and substantia nigra. As a redox-active metal, iron powers ATP 

production in neurons, but overload renders neural tissue vulnerable to oxidative damage and 

proteolysis.121 Beyond aging, hereditary hemochromatosis (HH)—an autosomal recessive 

disorder from HFE gene mutations (C282Y, H63D) disrupting hepcidin regulation—

accelerates brain iron deposition.122,123 Though the blood-brain barrier normally shields the 

CNS during systemic imbalance, overload compromises this defence, potentially elevating PD 

risk in HH patients through dysregulated storage and export.124 Iron dysregulation culminates 

in ferroptosis, a caspase-independent regulated cell death (RCD) form distinct from apoptosis, 

necrosis, or autophagy.129,126 First described by Brent Stockwell, ferroptosis features shrunken 

mitochondria with reduced cristae density, outer membrane rupture, and no plasma membrane 

lysis or bioenergetic catastrophe. In neurodegeneration, it unleashes inflammation, 

neurotransmitter oxidation, synaptic failure, myelin breakdown, astrocyte dysfunction, and 

neuronal demise.125 

Ferroptosis triggers via glutamate/iron/polyunsaturated fatty acid (PUFA) buildup or 

glutathione (GSH)/NAD(P)H/glutathione peroxidase 4 (GPX4) depletion. Iron uptake begins 

with transferrin receptor 1 (TFR1) binding, endosomal endocytosis, ferric (Fe³⁺) reduction by 

STEAP3, and ferrous (Fe²⁺) export via DMT1 into the labile iron pool (LIP) or ferritin 

storage.127 Excess LIP Fe²⁺ catalyzes Fenton reactions, generating hydroxyl radicals that 

initiate PUFA peroxidation in plasma membranes.128 Lipid hydroperoxides (PL-OOH) 

decompose into toxic aldehydes, epoxides, and oxo products, forming nanomembrane pores 

that rupture cells.130 This peroxidation propagates cell-to-cell in waves, perpetuating iron-lipid 

vicious cycles.131 Three anti-ferroptotic pathways counter this: the canonical GSH/GPX4 axis 

neutralizing peroxides; the FSP1/coenzyme Q10/NAD(P)H system; and the GCH1/bh4/DHFR 

route.132 In PD, basal ganglia iron excess—visible as MRI hypointensities—amplifies 

dopaminergic ferroptosis, positioning iron chelators like deferiprone and ferroptosis inhibitors 

(ferrostatin-1) as promising disease-modifying strategies.133 
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Figure 2. Anti-Ferroptotic Pathways: TFR1-STEAP3 iron uptake → Fenton-driven PUFA 

peroxidation countered by GSH/GPX4, FSP1/CoQ10, and GCH1/BH4/DHFR radical 

scavenging. 

Ferroptosis Defence Pathways: GPX4, FSP1/CoQ10, and GCH1/BH4 Systems 

Glutathione peroxidase 4 (GPX4) stands as the cornerstone selenoenzyme suppressing 

ferroptosis, the iron-dependent lipid peroxidation cell death. Physiologically, GPX4 harnesses 

glutathione (GSH) to reduce cytotoxic lipid hydroperoxides (PL-OOH) to harmless alcohols 

(PL-OH), directly countering the Fenton reaction-driven membrane damage in Parkinson's 

disease (PD). GSH depletion or GPX4 inactivation unleashes ferroptotic cascades in 

dopaminergic neurons.134,135,136 

GSH biosynthesis hinges on the cystine/glutamate antiporter system xc⁻, which imports cystine 

for reduction to cysteine by GSH itself or thioredoxin reductase 1 (TRR1).137 ATP-dependent 

glutamate-cysteine ligase (GCL) then forms γ-glutamylcysteine, followed by glutathione 

synthetase (GS) addition of glycine to yield GSH.138 Transcription factors orchestrate this: Nrf2 

(nuclear factor erythroid 2-related factor 2) upregulates GCL, GS, GCLC (GCL catalytic 

subunit), GSTs (glutathione S-transferases), HO-1 (heme oxygenase-1), and NQO1 (NAD(P)H 

quinone dehydrogenase 1), mounting a broad antioxidant defence.139 Nrf2 modulation emerges 

as a promising neuroprotective strategy for PD, potentially amplifying GSH/GPX4 resilience 

against iron overload.140 

Parallel to this canonical axis operates the FSP1-CoQ10-NAD(P)H pathway, a GSH-

independent ferroptosis suppressor.140 Ferroptosis suppressor protein 1 (FSP1) features N-

myristoylation for membrane targeting and a flavoprotein oxidoreductase domain. FSP1 

reduces coenzyme Q10 (CoQ10)—the lipophilic mitochondrial electron carrier—to ubiquinol 
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(CoQ10-H2) using NAD(P)H.141 Both oxidized and reduced CoQ10 scavenge lipid peroxides 

at plasma membranes, safeguarding PUFA-rich phospholipids.142 NQO1 synergizes with 

FSP1, further reducing ubiquinone to ubiquinol, with Nrf2 governing NQO1 expression.143 

This system's potency rivals GPX4/GSH, positioning FSP1/CoQ10 activators as viable PD 

therapeutics.144 

The GCH1/BH4/DHFR pathway, though underexplored in neurodegeneration, offers a third 

defence line. Tetrahydrobiopterin (BH4)—essential for dopamine biosynthesis—traps lipid 

peroxidation radicals while boosting CoQ10 synthesis via phenylalanine hydroxylase.145 GTP 

cyclohydrolase 1 (GCH1) rate-limits de novo BH4 production; dihydrofolate reductase 

(DHFR) recycles oxidized BH4.146 DHFR inhibition synergizes with GPX4 blockers to induce 

ferroptosis therapeutically,147 but BH4 supplementation may conversely protect neurons. 

GCH1/BH4's role in PD ferroptosis warrants deeper investigation given BH4's dopamine 

linkage.148 

Therapeutic Horizons 

Ferroptosis inhibition offers disease-modifying potential for PD, targeting iron dysregulation 

at multiple nodes. Iron chelators like deferiprone149 reduce labile Fe²⁺ pools, blunting Fenton 

chemistry.150 Nrf2 agonists (e.g., dimethyl fumarate) amplify GSH/GPX4 and NQO1 defenses. 

GPX4 stabilizers or GSH precursors (N-acetylcysteine) restore canonical protection.151 CoQ10 

supplementation—already trialled in PD—leverages FSP1 pathway radical trapping.152 

Emerging GCH1/BH4 modulators could enhance dopamine synthesis alongside anti-

peroxidant effects.153 

Recent (2021–2026) PD trials highlight ferrostatin-1 analogs, liproxstatin-1, and α-lipoic acid 

as ferroptosis inhibitors attenuating nigral lipid peroxidation in MPTP/6-OHDA models.154 

TFR1 antagonists curb iron import; xCT activators replenish GSH.155 Combined chelation-

antioxidant regimens show synergistic dopaminergic preservation.156These strategies shift PD 

therapy from L-DOPA palliation toward upstream homeostasis restoration, potentially halting 

progression in iron-vulnerable basal ganglia circuits.157,158 

Medicine Mechanism and Function 

Iron Chelators 

Deferiprone 

Iron chelator; inhibits pathological α-synuclein 

toxicity in sporadic PD mouse models 

Desferrioxamine Iron chelator; directly binds excess iron 

Nrf2 Pathway Activators 
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Medicine Mechanism and Function 

Alpha lipoic acid 

Antioxidant/iron chelator; activates SIRT1/Nrf2 

signaling to regulate iron metabolism and suppress 

ferroptosis 

Gastrodin 

Antioxidant; upregulates Nrf2, GPX4, ferroportin-1 

(FPN1), and HO-1 protein expression 

Hinokitiol 

Antioxidant/iron chelator; activates Nrf2 

cytoprotective transcription 

Icariside II 

Antioxidant; activates Keap1/Nrf2/GPX4 signaling 

pathway 

Morroniside 

Antioxidant; activates Nrf2/ARE signaling to protect 

PD dopaminergic neurons from ferroptosis 

Paeoniflorin Antioxidant; activates Akt/Nrf2/GPx4 pathway 

Quercetin Antioxidant; inhibits ferroptosis via Nrf2 activation 

GPX4/GSH Axis Modulators 

Lapatinib 

Activates GPX4/GSH/NRF2 axis; inhibits oxidative 

markers (iron, TfR1, PTGS2, 4-HNE); suppresses p-

EGFR/c-SRC/PKCβII/PLC-γ/ACSL-4 pathway 

Idebenone 

Inhibits NAD(P)H dehydrogenase downregulation, 

reduces lipid peroxidation, increases GPX4 

expression 

Ferritinophagy & Iron Regulators 

Buddlejasaponin IVb Suppresses IRP2-mediated iron overload 
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Medicine Mechanism and Function 

Dl-3-n-butylphthalide 

Regulates ferritin expression, promotes Nrf2 nuclear 

translocation, inhibits NCOA4-mediated 

ferritinophagy 

Antioxidants & Multi-target 

Doxycycline & 

Demeclocycline 

Prevent intracellular oxidative stress and 

mitochondrial membrane depolarization 

Probiotic Strain L. lactis 

MG1363-pMG36e-GLP-1 

Activates Keap1/Nrf2/GPX4 pathway; downregulates 

ACSL4, upregulates FSP1 to suppress ferroptosis 

Novel Pathway Modulators 

Pazopanib 

Targets HSP90/CDC37 and multiple regulated cell 

death (RCD) mechanisms 

Rapamycin 

Autophagy inducer; inhibits ferroptosis via autophagy 

activation 

β-hydroxybutyrate 

Alleviates oxidative stress/ferroptosis via 

ZFP36/ACSL4 axis modulation 

Table 1: Depicting the different forms of Iron chelating agents and modulators   

Iron and Calcium Interplay 

Iron generates reactive oxygen species (ROS) that serve vital signaling roles in neurons, 

sculpting synaptic plasticity through structural and functional remodelling. ROS fine-tunes key 

effectors like NMDA receptors, voltage-gated Ca²⁺ channels (VGCCs), K⁺ channels, and 

CaMKII159—central to activity-dependent plasticity. Notably, ROS triggers redox 

modifications of ryanodine receptors (RyR) in hippocampal neurons, unleashing ER Ca²⁺ 

release that phosphorylates plasticity-linked enzymes.160 Iron-driven ROS similarly activates 

RyR-mediated Ca²⁺ signaling, boosting ERK1/2 phosphorylation even in Ca²⁺-free conditions, 

underscoring physiologic synergy.161 Yet excess ROS proves neurotoxic. Heightened iron 

sparks RyR-dependent Ca²⁺ liberation, promoting pathological mitochondrial fission and 

dysfunction.162 Iron-catalyzed lipid peroxidation further devastates mitochondria, elevating 

matrix Ca²⁺ that hyperactivates calcineurin—a Ca²⁺-dependent phosphatase—culminating in 

neuronal demise.163,164 
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This iron-Ca²⁺ interplay runs bidirectional. Ca²⁺ governs numerous antioxidant defenses and 

ROS-generating enzymes.164 Lipid peroxidation by-products like 4-hydroxynonenal (4-HNE) 

directly gate plasma membrane Ca²⁺ channels, including hippocampal VGCCs.165,166 Elevated 

4-HNE disrupts Na⁺/Ca²⁺ pumps and alters channel permeability, provoking energy failure and 

cell death.167,68  Conversely, Ca²⁺ dysregulation amplifies ROS cascades.169 Cytosolic Ca²⁺ 

overload or mitochondrial influx unleashes ROS bursts, destabilizing the labile iron pool.170 

Excess cytoplasmic Ca²⁺ stimulates neuronal nitric oxide synthase (nNOS) and NAD(P)H 

oxidase171,172—both ROS sources and plasticity modulators—forming vicious feed-forward 

loops.173 This intimate crosstalk renders neurons exquisitely vulnerable: iron dysregulation 

provokes Ca²⁺ storms, while Ca²⁺ mishandling exacerbates iron toxicity.173,174 In Parkinson's 

disease, substantia nigra iron deposits ignite Fenton chemistry, generating hydroxyl radicals 

that sensitize RyR/IP3R channels175 and overwhelm mitochondrial Ca²⁺ uniporters (MCU).176 

Resultant matrix Ca²⁺ spikes open permeability transition pores (mPTP), while cytosolic surges 

activate calpains and calcineurin, shredding dopaminergic circuits.177,178 

Therapeutically, dual-targeting holds promise. Iron chelators like deferiprone blunt ROS 

ignition,179 while MCU inhibitors (Ru360) or RyR stabilizers (dantrolene) curb Ca²⁺ 

amplification. 180,181 Nrf2 agonists simultaneously bolster GSH/GPX4 defenses against 

peroxidation while rebalancing ion homeostasis.182,183 This convergence positions the Fe²⁺-Ca²⁺ 

axis as a high-yield therapeutic nexus for neurodegeneration, where untangling one strand 

inevitably stabilizes the other.184 

Conclusion:  

Parkinson's disease (PD) remains a prevalent neurodegenerative disorder with elusive etiology, 

where metal ion dyshomeostasis—particularly calcium (Ca²⁺) and iron—emerges as a pivotal 

driver of pathogenesis. This review underscores Ca²⁺ as an indispensable second messenger, 

orchestrating neuronal excitability, synaptic plasticity, and survival through plasma membrane 

channels (VGCCs, NMDA-R) and intracellular stores (ER IP3R/RyR, mitochondrial MCU). 

Disruptions in Ca²⁺ homeostasis precipitate dopaminergic demise in the substantia nigra, yet 

calcium channel blockers (e.g., dihydropyridines) reveal neuroprotective potential, 

illuminating microscopic Ca²⁺ signaling as a therapeutic linchpin. Concurrently, nigral iron 

overload—evident via MRI hypointensities—fuels ferroptosis, an iron-dependent lipid 

peroxidation cascade distinct from apoptosis. While the canonical GPX4/GSH axis dominates 

research, with Nrf2 agonists amplifying antioxidant defenses (HO-1, NQO1, GCLC), parallel 

pathways warrant exploration. The FSP1/CoQ10/NAD(P)H system deploys ubiquinol radical 

trapping at membranes, though CoQ10 biosynthesis and membrane targeting pose key 

challenges. Similarly, the GCH1/BH4/DHFR pathway—critical for dopamine synthesis—

offers untapped anti-peroxidant potential via BH4 radical scavenging, meriting PD-specific 

validation. 

Critically, Ca²⁺-iron crosstalk amplifies vulnerability: iron-catalyzed ROS sensitizes RyR 

channels and VGCCs, unleashing cytosolic/mitochondrial Ca²⁺ storms, while Ca²⁺ overload 

destabilizes labile iron pools via nNOS/NADPH oxidase activation. This bidirectional synergy 

culminates in mPTP opening, calcineurin hyperactivation, and ferroptotic collapse. 

Future prospect:  
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Future therapies must transcend unidimensional targeting. Multifunctional agents—combining 

iron chelators (deferiprone), MCU inhibitors (Ru360), Nrf2 inducers, and CoQ10/FSP1 

stabilizers—hold transformative promise. Precision nanotherapeutics or bifunctional small 

molecules addressing the Ca²⁺-Fe²⁺ nexus could pioneer disease-modifying interventions, 

shifting PD management from symptomatic palliation to homeostasis restoration. 
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