E-ISSN 0976-2833 | ISSN 0975-3583
 

Original Research 


Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)

Elvina Amanda, Marischa Elveny, Rahmad Syah.

Abstract
Diabetic retinopathy and normal retinal diseases need a detection approach, in this case, to make the decision to diagnose diabetic retinopathy through retinal fundus images. The application aims to identify diabetic retinopathy through fundus imagery using Probabilistic Neural Network. The method we use involves the Probabilistic Neural Network (PNN) in the process of testing image data through the retina fundus. The results of this study have achieved detection of the accuracy of recognition of the range in reading images through the retina fundus of 88.9%, and The estimation of σ≥ 0.8 is the best benefit of smoothing boundaries to recognize diabetic retinopathy by utilizing the Probabilistic Neural Network, this shows the detection of research is quite high.

Key words: PNN Method, Retinal Fundus, Image Processing, Diabetic Retinopathy Detection.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Elvina Amanda
Articles by Marischa Elveny
Articles by Rahmad Syah
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

Elvina Amanda, Marischa Elveny, Rahmad Syah. Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN). J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306. doi:10.31838/jcdr.2020.11.04.54


Web Style

Elvina Amanda, Marischa Elveny, Rahmad Syah. Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN). http://www.jcdronline.org/?mno=17930 [Access: July 06, 2021]. doi:10.31838/jcdr.2020.11.04.54


AMA (American Medical Association) Style

Elvina Amanda, Marischa Elveny, Rahmad Syah. Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN). J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306. doi:10.31838/jcdr.2020.11.04.54



Vancouver/ICMJE Style

Elvina Amanda, Marischa Elveny, Rahmad Syah. Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN). J Cardiovasc. Dis. Res.. (2020), [cited July 06, 2021]; 11(4): 302-306. doi:10.31838/jcdr.2020.11.04.54



Harvard Style

Elvina Amanda, Marischa Elveny, Rahmad Syah (2020) Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN). J Cardiovasc. Dis. Res., 11 (4), 302-306. doi:10.31838/jcdr.2020.11.04.54



Turabian Style

Elvina Amanda, Marischa Elveny, Rahmad Syah. 2020. Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN). Journal of Cardiovascular Disease Research, 11 (4), 302-306. doi:10.31838/jcdr.2020.11.04.54



Chicago Style

Elvina Amanda, Marischa Elveny, Rahmad Syah. "Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)." Journal of Cardiovascular Disease Research 11 (2020), 302-306. doi:10.31838/jcdr.2020.11.04.54



MLA (The Modern Language Association) Style

Elvina Amanda, Marischa Elveny, Rahmad Syah. "Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)." Journal of Cardiovascular Disease Research 11.4 (2020), 302-306. Print. doi:10.31838/jcdr.2020.11.04.54



APA (American Psychological Association) Style

Elvina Amanda, Marischa Elveny, Rahmad Syah (2020) Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN). Journal of Cardiovascular Disease Research, 11 (4), 302-306. doi:10.31838/jcdr.2020.11.04.54





Most Viewed Articles
  • Massive pericardial effusion as the only manifestation of primary hypothyroidism
    Radheshyam Purkait , Anand Prasad , Ramchandra Bhadra , Arindam Basu
    J Cardiovasc. Dis. Res.. 2013; 4(4): 248-250
    » Abstract » doi: 10.1016/j.jcdr.2014.01.001

  • Impact of light exercises in selective cognitive response andhandballshooting accuracy performance in Mesopotamia handball players
    Ahuda Naji Zaidan, Qusay Mohammed Hamdan, Mohammed Kadhim Saleh, Samer Saadoun Abd El , Rida
    J Cardiovasc. Dis. Res.. 2021; 12(2): 141-145
    » Abstract » doi: 10.31838/jcdr.2021.12.02.18

  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Typical coronary artery aneurysm exactly within drug-eluting stent implantation region in a patient with rheumatoid arthritis
    Ying Zheng, Jing-yuan Mao
    J Cardiovasc. Dis. Res.. 2012; 3(4): 329-331
    » Abstract » doi: 10.4103/0975-3583.102725

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • The Prediction of the Bisoprolol Effectiveness in Patients with Stable Coronary Artery Disease with Post-Infarction Cardiosclerosis
    Svetlana S. Bunova, Ol'ga V. Zamahina, Nikolaj A. Nikolaev, Nina I.Zhernakova, Andrey A.Grishchenko
    J Cardiovasc. Dis. Res.. 2020; 11(4): 105-109
    » Abstract » doi: 10.31838/jcdr.2020.11.04.18

  • Most Cited Articles