E-ISSN 0976-2833 | ISSN 0975-3583
 

Review Article 


Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha.

Abstract
Various decision support system based on Artificial Neural Networks have been extensively used for predicting cardio-vascular disease. But, some of the investigations concentrate on pre-processing the features. Here, this work focuses on feature refinement with segmentation and removal of problems related to prediction model. The problems are related to over-fitting and under-fitting. By avoiding these problems, the proposed model shows superior functionality while considering the available dataset. For eliminating the un-necessary parts of input data, de-noising stacked encoder is used for configuring the Convolutional Neural Networks with testing and training data. The anticipated model is compared with existing approaches and reported that this model outperforms the existing approaches for predicting heart disease. The anticipated model acquires finest prediction accuracy. The results are seems to be more promising while compared to the other. The findings based on this study recommend that this diagnostic system is utilized for physicians to predict heart disease accurately. Simulation is done in MATLAB environment.

Key words: Cardio-vascular Disease, CNN, Feature Refinement, Prediction Accuracy, Segmentation.


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by G. Charlyn Pushpa Latha
Articles by S. Sridhar
Articles by S. Prithi
Articles by T. Anitha
on Google
on Google Scholar


How to Cite this Article
Pubmed Style

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha. Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks. J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31. doi:10.31838/jcdr.2020.11.04.05


Web Style

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha. Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks. http://www.jcdronline.org/?mno=133172 [Access: July 26, 2021]. doi:10.31838/jcdr.2020.11.04.05


AMA (American Medical Association) Style

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha. Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks. J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31. doi:10.31838/jcdr.2020.11.04.05



Vancouver/ICMJE Style

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha. Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks. J Cardiovasc. Dis. Res.. (2020), [cited July 26, 2021]; 11(4): 26-31. doi:10.31838/jcdr.2020.11.04.05



Harvard Style

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha (2020) Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks. J Cardiovasc. Dis. Res., 11 (4), 26-31. doi:10.31838/jcdr.2020.11.04.05



Turabian Style

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha. 2020. Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks. Journal of Cardiovascular Disease Research, 11 (4), 26-31. doi:10.31838/jcdr.2020.11.04.05



Chicago Style

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha. "Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks." Journal of Cardiovascular Disease Research 11 (2020), 26-31. doi:10.31838/jcdr.2020.11.04.05



MLA (The Modern Language Association) Style

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha. "Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks." Journal of Cardiovascular Disease Research 11.4 (2020), 26-31. Print. doi:10.31838/jcdr.2020.11.04.05



APA (American Psychological Association) Style

G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha (2020) Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks. Journal of Cardiovascular Disease Research, 11 (4), 26-31. doi:10.31838/jcdr.2020.11.04.05





Most Viewed Articles
  • Effects of right ventricular septal versus apical pacing on plasma natriuretic peptide levels
    nikoo M.H, ghaedian m. m., kafi M., fakhrpour A., Jorat M. V., Pakfetrat M., Ostovan M., Zahra Emkanjoo
    J Cardiovasc. Dis. Res.. 2011; 2(2): 104-109
    » Abstract » doi: 10.4103/0975-3583.83036

  • Massive pericardial effusion as the only manifestation of primary hypothyroidism
    Radheshyam Purkait , Anand Prasad , Ramchandra Bhadra , Arindam Basu
    J Cardiovasc. Dis. Res.. 2013; 4(4): 248-250
    » Abstract » doi: 10.1016/j.jcdr.2014.01.001

  • Impact of light exercises in selective cognitive response andhandballshooting accuracy performance in Mesopotamia handball players
    Ahuda Naji Zaidan, Qusay Mohammed Hamdan, Mohammed Kadhim Saleh, Samer Saadoun Abd El , Rida
    J Cardiovasc. Dis. Res.. 2021; 12(2): 141-145
    » Abstract » doi: 10.31838/jcdr.2021.12.02.18

  • Reduced nitrate level in individuals with hypertension and diabetes
    Shiekh Gazalla Ayub, Taha Ayub, Saquib Naveed Khan, Rubiya Dar, Khurshid Iqbal Andrabi
    J Cardiovasc. Dis. Res.. 2011; 2(3): 172-176
    » Abstract » doi: 10.4103/0975-3583.85264

  • Factor analysis of risk variables associated with metabolic syndrome in adult Asian Indians
    Mithun Das, Susil Pal, Arnab Ghosh
    J Cardiovasc. Dis. Res.. 2010; 1(2): 86-91
    » Abstract » doi: 10.4103/0975-3583.64442

  • Most Downloaded
  • Assessment of the Knowledge and Attitude of Male Students towards Smoking Based on Health Belief Model
    Rafat Rezapour-Nasrabad, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Khatereh Rostami, Amin Kiani, Afsaneh Ghasemi
    J Cardiovasc. Dis. Res.. 2020; 11(4): 116-121
    » Abstract » doi: 10.31838/jcdr.2020.11.04.20

  • Diabetic Retinopathy, The Automated of Detection of Retinal Fundus Images with Probabilistic Neural Networks (PNN)
    Elvina Amanda, Marischa Elveny, Rahmad Syah
    J Cardiovasc. Dis. Res.. 2020; 11(4): 302-306
    » Abstract » doi: 10.31838/jcdr.2020.11.04.54

  • Investigation of the Relationship between Social Support and Adherence to Treatment among Elderly Individuals with Type II Diabetes Mellitus
    Afsaneh Ghasemi, Rafat Rezapour-Nasrabad, Leila Nikrouz, Fatemeh Izadi, Atousa Karimi, Fateme Shariati Far, Zahra Khiali
    J Cardiovasc. Dis. Res.. 2020; 11(4): 122-129
    » Abstract » doi: 10.31838/jcdr.2020.11.04.21

  • The Prediction of the Bisoprolol Effectiveness in Patients with Stable Coronary Artery Disease with Post-Infarction Cardiosclerosis
    Svetlana S. Bunova, Ol'ga V. Zamahina, Nikolaj A. Nikolaev, Nina I.Zhernakova, Andrey A.Grishchenko
    J Cardiovasc. Dis. Res.. 2020; 11(4): 105-109
    » Abstract » doi: 10.31838/jcdr.2020.11.04.18

  • Cardio-Vascular Disease Classification Using Stacked Segmentation Model and Convolutional Neural Networks
    G. Charlyn Pushpa Latha, S. Sridhar, S. Prithi, T. Anitha
    J Cardiovasc. Dis. Res.. 2020; 11(4): 26-31
    » Abstract » doi: 10.31838/jcdr.2020.11.04.05

  • Most Cited Articles